HiSoft Devpac80

Fast Interactive CP/M Development Kit

System Requirements:
280 disc system running CP/M 2 or CP/M 3 with at least 36K TPA.

Copyright © HiSoft 1987
Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™,

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy of HiSoft Devpac80.

It is an infringement of the copyright pertaining to HiSoft Devpac80 and its
associated documentation to copy, by any means whatsoever, any part of HiSoft
Devpac80 for any reason other than for the purposes of making a security back-
up copy of the object code.

Scanned and converted to PDF by HdnsO, 2003

" HiSoft GENSO

Fast Interactive CP/M Assembler

System Requirements:
Z80 disc system running CP/M 2 or CP/M 3 with at least 36K TPA.

Copyright © HiSoft 1987
Version 2 May 1987

First printing May 1987
Second printing October 1987

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™,

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording.
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

The information contained in this document is to be used only for modifying the
reader's personal copy of HiSoft Devpac80.

It is an infringement of the copyright pertaining to HiSoft Devpac80 and its
associated documentation to copy. by any means whatsoever, any part of HiSoft
Devpac80 for any reason other than for the purposes of making a security back-
up copy of the object code.

Contents

SECTION 1 Introduction to GEN80 G-1
1.1 For Experienced

Programmers G-2

SECTION 2 GENB8O Reference G-3

2.1 Getting Started G-3

2.2 How GENB80 Works G-4

2.3 Top-Of-File Options G-6

2.4 Assembler Statement Format G-14

2.5 Labels G-16
2.6 Location Counter G-17
2.6.1 .COM file Mode G-17
2.6.2 .REL file Mode G-19
2.7 Symbol Table G-20

2.8 Relative & Absolute Values G-22
2.9 Expressions G-22

2.10 Assembler Directives G-27

Gen80 Assembler HiSoft Devpac80 v. 2.0 Contents
»

2.11 Assembler Commands G-34

2.12 Macros G-36
2.13 Assembly Listing G-41
SECTION 3 Installing GEN8O G-43
SECTION 4 Quick Reference Guide G-45
4.1 Error Messages G-45
4.2 Reserved Words G-49
4.3 Valid Mnemonics G-49
4.4 Assembler Directives G-49
4.5 Top-Of-File Options G-50
4.6 Assembler Commands G-50
4.7 Operators G-50
4.8 .REL File Format G-51

Contents HiSoft Devpac80v. 2.0 Gen80 Assembler

SECTION 1
Introduction to GEN80

GENBSO is a fast, full-feature, macro assembler for CP/M systems. It
conforms very closely to both the Microsoft M80™ and Zilog™
assembler syntaxes allowing a wide range of assembler directives and
commands and producing either directly-executable .coM files or
linkable .REL files. Full expression handling is included together with
conditional assembly, source include and extensive error reporting.

The various sections of this manual are now described to allow you to
make efficient use of them.

Section 2 of this manual is a comprehensive guide to GEN8O giving
information on how to use and get the most out of every feature.
Everybody except the most experienced assembler programmer should
read this section as it contains many valuable examples of the use of
GENSO.

Section 3 is concerned with using the installation program for GEN8O;
you do not need to read this section unless you wish to change the
default top-of-file options used by GENS8O.

Section 4 is a quick reference guide to GEN8O for use after you have
familiarised yourself with the assembler.

If after reading Section 2 you are still unsure how to use the assembler
or you are unfamiliar with Z80 programming then you may find it
useful to work through the Devpac80 tutorial and/or consult one of
the books given in the Bibliography.

If you are an experienced programmer then you may find that Section
1.1 covers all the details you need to use GEN8O easily and efficiently.

Gen80 HiSoft Devpac80 ver. 2 Page G-1

1.1For Experienced Programmers

This section is included near the front of the manual to introduce the
experienced assembly language programmer to the bare essentials for
assembling a flle. The details that follow should enable such a
programmer to get to grips with GEN80O immediately. Naturally, the
requisite section of the manual should be consulted in case of
problems.

1)

2)

3)

4)

5)

6)

The normal and default filetype for GEN8O files is .GEN

The various fields in the source file (label, mnemonic, operand)
should be separated by white space. White space is defined as
any number of tab or space characters.

Labels may be of any length and may optionally be terminated
with a colon which will be stripped before entry into the symbol
table.

Mnemonics should start in column 2 or after (thus a space or tab
in column 1 is sufficient in the source file).

A command line of GEN80 <filename> will normally suffice for
assembly. Alternatively you can run the assembler from the
menu system provided by HDE, top-of-file options may be
included in the first line of your program so that the only reason
for using GEN8O from outside HDE is to assign different drives
to your source and object files. If the source file is of type .GEN
then the type may be omitted. By default an executable (or .COM)
file is produced which wil}, in this case, be on the same disc and
have the same name as the source file.

You can obey Microsoft M80™ or Zilog™ assembler syntax with
few problems; consult the Quick Reference Guide in case of
difficulty.

Page G-2 HiSoft Devpac80 ver. 2 Genso

SECTION 2
GENS8O Reference

2.1 Getting Started

There are two ways of invoking GEN8O from within your CP/M system;
firstly you can run the interactive editor by typing:

HDE TEST [RETURN]

where TEST.GEN is the file you wish to assemble. A menu will appear
and you press A to assemble the program. GEN80 assembles the Main
file which can be seen on the menu. It produces, by default, an object
code file on the same drive as the source file and with an extension of
.CoM, ready to run. GEN8O then returns to the menu after asking you
to hit any key. Alternatively, you can run GEN8O straight from CP/M

by typing:
GEN80 {object file=} source file {;options} {RETURN]
{} means optional.

This allows you to specify the object file on a different disc drive from
the source file (or with a different name) and lets you enter options at
assembly time rather than having the options built-in to the source file.

We have included a small example file called TEST.GEN on your disc
which you should have copied to your work disc so, using your working
disc in drive A, try to two methods now. Type:

HDE TEST [RETURN]

A

any key

0 and then type:

GEN8O object=test;1l+ |[FETURN]

Gensd0 HiSoft Devpac80 ver. 2 Page G-3

The first method produced a file called TEST.COM (you can run it from
the menu using R or from CP/M by typing TEST [RETURN]}. The second
method made a file called OBJECT.COM and turned the list on.

Having seen how to get GEN80O assembling there follows a slightly
technical discussion of how it works.

2.2 How GEN80 Works

GENBSO divides your available memory into three areas, one area for
source text, another area for resulting object code and the third area
for the Symbol Table, in that order. The size of these areas is normally
fixed by the assembler In a sensible ratio although you may change the
size of the Symbol Table buffer (using option *B) on any run of GEN80.
If object code generation is inhibited then the source text is given all the
available memory not aliocated to the Symbol Table.

GENBSO is a two pass assembler; it begins by reading as much of the
source text as will fit into the relevant memory area. This may be all of
the source. The assembler then enters its first pass in which it searches
for errors within the text and compiles its symbol table in memory.
When the last line of text from memory has been processed GEN8O
checks to see if all the text has been read from the disc - if not, the
source text area in memory is filled with fresh text from the disc and
the first pass continues. This path may be altered through use of the
Include assembler command (*I) which allows source from a specified
disc file to be assembled; when the source from this new file is
exhausted then assembly will continue from after the include line in
the original file. This is all handled automatically and is transparent to
the user.

During the first pass nothing is displayed on the screen or printer
unless an error is detected, in which case the rogue line will be
displayed with an error message and the filename of the file in which
the error was detected. The assembly then continues, displaying error
messages as appropriate. It will often be useful to direct these
messages to a disc file for later inspection as well as the screen (see
Section 2.3).

Page G-4 HiSoft Devpac80 ver. 2 Gendo

At the end of the first pass the message:
Pass 1 errors: nn

will be displayed. If any errors have been detected the assembly will
then halt and not proceed to the second pass, unless you have specified
that the 2nd pass be forced using the option *F.

If any labels were referenced in an operand field but never declared in
the label field then the message

WARNING label absent

will now be displayed (with label being the name of the undeclared
label).

If errors or warnings occurred and you ran GEN8O from within the
menu system then the message:

Error(s) found, hit a key for the editor:

will appear. Hit a key and the editor will appear with your source file.
You can now use the command Goto Next Error to skip to the rogue
line, correct it, exit the editor and re-assemble from the menu. More
details of this are given in the Editor and Tutorial sections.

If you ran GEN80 from CP/M then you will be returned to CP/M.

If no warnings or errors were detected (or the 2nd pass was forced),
then the assembly now proceeds to the second pass.

It is during the second pass that object code is generated, if required.
Code is fed to the object code buffer in memory and if this area becomes
full then it is emptied to the specified object code file on disc and re-
initialised. An assembler listing, see Section 2.13, is generated during
the second pass unless this has been switched off. The only syntax
error that can occur during the second pass is the

Out of range

error and the action taken following this is the same as given above for
first pass errors.

Genso HiSoft Devpac80 ver. 2 Page G-5

The assembler listing may be paused at any time by using [CTRL]-5
and restarted by using any key except [CTRL]-C which will abort the
listing.

At the end of the second pass the message:

Pass 2 errors: nu

will be displayed followed by a repeat of any warnings for any absent
labels detected during the first pass. You will now be informed of how
many CRG assembler directives were issued; this is done since coMfiles
must be continuous and the use of more than one ORG implies a
discontinuity of object code. The form of the message is:

WARNING ORGe used: nn

Finally the assembly will terminate with the message:

Symbol table used:xK out of yK.

where x is the number of kilobytes used by the Symbol Table and vy is
the number of kilobytes that was allocated to the table.

Note: If at any time during the first pass the Symbol Table becomes full
then it will not overflow to disc. Instead the message

Used all xK bytes of Symbol Table!
will be reported and the assembly aborted.
If errors were detected on the second pass then the action taken is the

same as that at the end of the first pass i.e. you are either returned to
the editor of CP/M depending on how you invoked GEN8O.

2.3 Top-of-File Options

There are a large number of options available within GENS80 for
controlling the assembly process. They may be broadly divided into
those that must appear at the top of the source file and those that may
appear anywhere in the source file.

Page G-6 HiSoft Devpac80 ver. 2 Gen80

The top-of-file options are described here and the others, which are
called assembler commands, appear later. There are three of the top-
of-file options that belong to both groups and these are accordingly
described in both sections.

There are two places that are considered the top of the file:

1) On the command line when using GEN8O directly from CP/M.
When the options appear here, they must be preceded by a ; and
separated from each other by tabs, spaces or commas e.g.

GEN8O test:;N, R+, K [RETURN]

2) On the very first line of the source file. When the options appear
here, they must be preceded by a * and separated from each
other by tabs, spaces or commas e.g.

*List+, Maclist On Print +

When developing interactively with HDE, this is the only way you
can specify the top-of-file options.

If there are no options required then it is wise to leave a blank line at
the front of the file. The assembly options are divided into two groups:-
Switches and Global Options (which must appear at the top of file).

SWITCHES consist of a letter indicating the command (optionally
followed by the rest of a word) followed by white space (space or tab
characters) and then one of ON, OFF, + or -. ON and OFF may be entered
in lower case if you wish. This format allows the flexiblity to be either
terse or to make things clear to the inexperienced user. For example:

GENBQ TEST;Listing off
GEN80 TEST;L - (Note that if + or - is used)
GEN8Q TEST;List- [white space need not be present)

will all have the same effect (of switching off the listing).

Gens0 HiSoft Devpac80 ver. 2 Page G-7

The six switches are:-

List

This specifies whether assembly listing is generated. A counter is
maintained during the second pass of the assembly, the state of which
dictates whether listing is on or off. A List ONcommand adds 1 to the
counter and a List OFF command subtracts 1. If the counter is zero
or positive then listing is on, and if it is negative then listing is off. The
default starting value for the counteris -1 (i.e. listing off). This system
allows a considerable degree of control over listing permitting, as an
example, the overriding of the List OFF which normally appears at the
head of a library file by a preceding List ONin the main file. If the user
does not require such control, then alternating ON and OFF commands
will, of course, work as expected. The List switch is also an assembly
command (i.e. it may appear anywhere in the file) and is also mentioned
in Section 2.11.

Maclist

This specifies whether the lines generated by the expansion of macro
calls are listed or not. The default is Maclist OFF. The Maclist switch
is also an assembly command (i.e. it may appear anywhere in the file)
and is also mentioned in Section 2.11.

Printer

This specifies whether the assembler listing (if listing is being
generated) is output to the printer (via the CP/M logical device LsT:).
The default is Printer OFF. The Printer switch is also an assembly
command (i.e. it may appear anywhere in the file) and is also mentioned
in Section 2.11. '

Relocate

This allows to to choose to generate either .COM or .REL object code
files. .coM files are files that can be executed directly from CP/M once
they are produced, they should start at address #100 (decimal 256).
-REL object files cannot be executed directly, they consist of a stream
of bits and not sensible Z80 opcodes.

Page G-8 HiSoHt Devpac80 ver. 2 Genéo

The purpose of . REL flles is to allow linking of files together, two or more
.REL files may be joined together using a standard linker (e.g.
LINK.COM supplied with Amstrad CP/M Plus) or Microsoft’'s L80™,

The default setting of this switch is R- 1.e. so relocatable output is off
and a .coMfile is produced. If R+is used then other assembler directives
are allowed viz. ASEG, CSEG, DSEG, PUBLIC, EXTERNAL, .PHASE, and
.DEPHASE. These are specific to relocatable code output and are
explained in more detail later; if you attempt to use these directives
when R+ has not been used then you will get an error. You can also use
.REL files to make Resident System Extensions under CP/M Plus.

Quick

This somewhat arbitrarily-named option specifies whether or not a
.ERR file is generated by the assembler when errors are detected.

If you have used @+ then all error information will be dumped to a . ERR
file whose filename is the same as the source filename; this error
information is then used by the interactive editor (HDE) to show you
the errors in your source file when you use the Goto Next Error
command. If you use Q- then no .ERR file is produced.

Upper case

U+ switches case-sensitivity off so that the assembler upper-cases all
characters in labels; U- turns case-sensitivity on. The default is U-.

The following GLOBAL OPTIONS may only appear at the top of the file.

Directinput

This extremely powerful option may only appear on the command line
and not in the file and therefore cannot be used interactively. It allows
you to enter text from the keyboard just as though it was in a file. If
this option has been specified, GEN80 will print the prompt

Direét mode:
At Front (Y/N)?

and on receipt of an answer (Yes or No) will then accept input from the
keyboard prior to considering the first line of the main file.

Gen80 HiSoft Devpac80 ver. 2 Page G-9

You should type instructions just as though to a file and all the normal
CP/M line-editing functions are available. On receipt of a blank line
(i.e. just [RETURN] alone), GEN8O will make a temporary file on the
logged-in disc whose identifier is GENTEMP . $$$ and whose contents are
whatever has been typed at the keyboard. GEN8O's activities now
depend on the answer to the original prompt.

If you replied Y then GEN8O will act as though the first line of the file
was ‘

*I GENTEMP.$$$

i.e. the text input from the keyboard will be assembled at the front of
the file. GEN80 will then continue to assemble the main file as normal.
If you replied N then GEN8O will ignore the temporary file and continue
to assemble the main file as normal. In both cases (but more obviously
the second case) you are free to include the line

*I GENTEMP.SS

explicitly in the main (or any other) file (see Assembler commands
below for the meaning of *I). The temporary file will be deleted after
assembly is completed. The default setting is that DirectInput is not
accepted.

The DirectInput option can be used in many ways:- a label controlling
conditional assembly may be specified without altering the main file,
registers may be set up specifically for testing of program modules, an
ORG statement may be typed to test or verify the position-independence
of code etc.

ForceSecond

If this option is specified then the Second Pass of the assembly process
is forced even if there are errors or warnings in the first pass. This
option will generally be used if a print-file is being made (see below) so
all errors can be inspected and corrected at on go. An additional use
of the option is to find any

Out of range

errors (e.g. a relative jump that is out of range).

Page G-10 HiSoft Devpac80 ver. 2 Gens80

This type of error will only occur on the second pass and will thus be
missed if the assembly is aborted after the first pass due to other errors
in the file. The default setting is that the second pass is not forced.

KillObject

If this option is specified then if the object file already exists on the disc,
it will be deleted without asking the user. If the option is not specified
then the user will be prompted whether to delete the previous object file
or not. The default setting is that previous object files are deleted
automatically.

NoObject

This specifies whether an object file (.COMor .REL) is generated or not.
Using this option to inhibit generation of object code may be used for
a fast test assembly to check that there are no syntax errors in the file.
The default is that object code is generated.

TablePrint

If this option is specified then a Symbol Table, showing all labels in
alphabetical order (with their values) is output after the end of the
second pass. If this option is selected with listing off and a print-file is
made (see below) then a disc file will be produced consisting only of the
source file labels. This can be extremely convenient and useful for
debugging or reference purposes. The default setting is that no Symbol
Table list is produced.

Generate SYM file

The G option dictates whether or not a .SYM file is created and what
length of symbols go into it. The reason for wanting a .SyM file is that
the debugger,ProMON, will use any .SyM file corresponding to an
object program that is being debugged to extract the symbols of the
program so that you can see your program labels while debugging.

Gen80 HiSoft Devpac80 ver. 2 Page G-13

Two types of .syM file may be produced; one containing up to 6
character labels, upper-cased (for compatibility with the .SyM files
created by the linkers LINK and L80) or one with up to 10 character
labels, upper- and lower-cased for maximum readability whilst
debugging. You get the first by using G 6 and the second by G 10 which
is the default. Alternatively, you can generate no .syM file by using G
0 to turn off the symbol dump.

Virtual Disking

This option allows the user who has only one disc drive in his system
to retain full control over which discs are used for various files. If this
option is specified then the letter that is normally used in CP/M to
denote a drive is now used to denote a disc, and the logged-in drive is
used throughout. Thus the source file might read:-

*Virtualdisking, WritePRNfile B:file

*Include C:modulel
*Include C:module2
*Include C:module3

and the command line might be:-
A>GENS80O D:file=file [RETURN]
This rather complex example simply means:-

a) Drive A: is used throughout

b) The main source file is taken from the same disc as GEN8O. This
is because no discname is specified for it on the command line.

c¢) A print-file is produced on another disc (B:).

d) The includes are taken from another disc (C:).

e} The object file is written to a fourth disc (D:).

Whenever a disk-change is required (which would be rather often in the
above slightly far-fetched example) GEN8O halts and prompts you to
insert a disc. This should, of course, be put into the logged-in drive and
then a key is pressed to restart GENSO.

Page G-12 HiSoft Devpac80 ver. 2 Gens80

Virtual disking allows the owner of a one-drive system both to assemble
large files and to keep different types of files on different discs (e.g. a
certain disc is used for .PRN files alone).

WritePRNfile

If this option is specified then a file with filetype .PRN will be created
containing whatever assembly listing and error messages that would
otherwise have gone to the screen. You may specify a filename after
WritePRNfile (separated by a tab, space or comma).

If no file is specified then the drive and filename are the same as for the
source file, otherwise if no drive is specified then the currently logged-
in drive is used. If errors result from the assembly then the messages
are sent both to the screen and the file. The default setting is that no
print-file is created. No other assembler option may follow the
WritePRNfile option.

SizeOfLabels

This specifies the number of characters in labels that are treated as
significant and requires a numeric parameter. This should be a decimal
number separated by a space, tab, or comma from the option itself. The
value given is the number of characters that will be entered into the
Symbol Table and thus space considerations form the upper limit for
label length e.g.

Size 6 for a small symbol table,
Size 12 for a very readable listing but large symbol table.

Whatever value n is given, the first n characters of all labels must be
unigue or a

Re-defined symbol

error will occur, The default value is 10, which should be sufficient for
most purposes.

Genso HiSoft Devpac80 ver. 2 Page G-13

BufferSymbols

This is used to specify the amount of memory used by the Symbol Table
and requires a numeric parameter. This should be a decimal number
separated by a space, tab, or comma from the option itself. The value
given is the amount of memory in kilobytes that the Symbol Table may
occupy. The default is 38% of the available RAM. The amount of space
used and allocated is displayed at the end of assembly. For fast
assembly it is best to specify a table-size just larger than that required.

As an example, if a test assembly reports that the Symbol Tai)le size
used was 7K then you should subsequently specify a size of 7 for most
efficient and speedy assembly e.g. use

B 7 as the option.

Remember that when you use options in your source file you must start
the line on which you use the options with an asterisk (*) e.g.

*List ON, R+, S 12

2.4 Assembler Statement Format

Each statement that is to be processed by GEN80 should have the
following format:

LABEL MNEMONIC OPERANDS COMMENT
start LD HL, label ;pick up 'label’

Excess spaces and tab characters (over and above the ones used to
separate the various fields) are ignored.

GENBO processes a source line in the following way:

The first character of the line is checked and subsequent action
depends on the nature of this character as indicated on the next page:

Page G-14 HiSoft Devpac80 ver. 2 Gen80

; the whole line is treated as a comment i.e. effectively ignored.

* expects the next character to be the first letter of an assembler
command - see Section 2.11. There may be more than one
command on a line and the commands should then be separated
by tab, space or comma characters.

<CR>
(end-of-line character) simply ignores the line.

(space)
if the first character is a space or a tab then GEN80 expects the
next non-space/tab character to be the start of a mnemonic,
macro or comment.

If the first character is any other than those given above then the
assembler expects a label to be present. For the format of a label see
Section 2.5 below.

After processing a valid label, or if the first character of the line is a
space/tab, the assembler searches for the next non- space/tab
character.

When found it either expects the character to be an end-of-line
character (in which case processing of the line ends) or the following 1-
plus characters to be a mnemonic or macro terminated by white space;
for a list of mnemonics see Section 4.3. If the mnemonic or macro is
valid and requires one or more operands then spaces/tabs are skipped
and the operand field processed. Each mnemonic has a definite
number of operands associated with it.

Comments may occur anywhere after the operand field or (if a
mnemonic takes no arguments) after the mnemonic field and may be,
theoretically, of any length.

Gen80 HiSoft Devpac80 ver. 2 Page G-15

2.5 Labels

Alabel is a symbol which represents up to 16 bits of information. It can
be used to specify either the address of a data area or particular
instruction or it can be used simply to specify data. If a label has been
associated with a value greater than 8 bits and it is then used where
an 8 bit constant is applicable then the assembler will generate an error
message e.g. the text:

Label EQU #1234
LD A, Label

will generate the error
Out of range in <source filename>
when processing the second statement on the second pass.

A label can contain any number of valid characters. It is, however open
to the user to specify how many of the characters are significant. As an
example, assume you specify (by use of the S assembly command) that
labels should be six characters in length. Now, although labels may be
any length in the actual source file, only the first six are entered into
the symbol table and thus two labels whose first six characters are the
same (even though subsequent characters may differ) will be seen by
GENBS8O as identical.

Thus if the label length is s (default value 10) the first S characters of
all labels must be unique since a label may not be re-defined (unless
the DEFL pseudo-operand is used. See Section 2.10).

Alabel must not constitute a Reserved Word, see Section 4.2, although
a Reserved Word may be embedded as a part of a label.

The characters which are legal in a label are: 0-9 $ and A-z although
a label may not start with a decimal digit. A label may also start with
a period (.) for compatibility. Note that A-z includes all the upper and
lower case alphabetics and the characters [\] ~ ' . A label may
optionally be terminated with a colon, which will be stripped from the
label. This feature is included for compatibility with source files from
other assemblers.

Page G-16 HiSoft Devpac80 ver. 2 Gen80

Some examples of valid labels:

LOOP (These 2 labels are distinct)
loop (as case is distinguished)
a_long label

A Label nol (not distinct by default as)
A Label no2 (first 10 chars not unique)

LDIR (LDIR is not a Reserved Word)
.labell: (These 2 labels are identical)
.labell (as trailing colons are lost)

2.6 Location Counter

The assembler maintains Location Counters so that symbols in the
label field can be provided with addresses and entered into the Symbol
Table.

2.6.1 .COM file Mode

Only one location counter is used when the assembler is generating
.coMmfiles directly (this is the default mode or R-), this location counter
is initially set to the value #100 which is the start address of any file
loaded by CP/M. The location counter is increased as instructions are
generated.

You may set the location counter to any absolute value through use of
the ORG directive; note, though, that this will simply change the value
of the counter so that the next code will be generated as ifit loaded at
the new address, no padding code will be created to actually force the
code to load at that address, that is your responsibility e.g.

1d de, start
1d hl, code
ld bc, length
ldir

ip start

message db "Hello World!s"™

Gen8o HiSoft Devpac8Ol ver. 2 Page G-17

code

org #8000
start

1d de, message

1d c,9

call 5

rst O

length equ $-start

This code will load at #100 since this is the default. The code moves the
4 instructions at the end to location #8000 and then jumps there to
print out a message. These 4 instructions are actually held
immediately after the message but are assembled as if they were to run
at #8000 (the purpose of the ORG) and thus, when they are moved to
#8000, they will execute correctly there.

If you wish to pad out your code so that code after an ORG is generated
in the place it is going to run, then you can use the DEF. directive like
this:

address equ #8000

ip far
defs address-$

org address
far

call routine

Jip more

Remember, though, that this will create a program on your disc that
is nearly #8000 (32K) long, mostly full of zeroes! Normally this would
not be a sensible thing to do.

The above example demonstrates the use of the $ symbol to mean the
current value of the location counter; $ gives the value of the counter
at the beginning of this instruction.

Page G-18 HiSoft Devpac80 ver. 2 Gend0

2.6.2 .REL file Mode

When using the R+ command to generate .REL files the assembler
keeps separate location counters for the ASEG, CSEG and DSEG
segments. This is so you can mix up the different segment types
without confusing the assembler. All location counters are set initially :
to 0.

The Location Counter value within any segment may be set by use of
the ORG directive but this has different effects depending on which type
of segment you are currently using.

Within ASEG (the Absolute SEGment), an ORG will behave as described
above for .COMfiles except that, at link time, the code following the ORG
will be loaded at the address of the ORG i.e. there is no need for you to
move it or to pad out using DEFS, the linker does the padding for you.
Also the intial location counter is 0 not #100.

For CsiG (Code SEGment) and DSEG (Data SEGment) an ORG sets the
location counter relative to the start of this segment e.g.

*r+
DSEG

ORG 25%
message defm "Devpac803"

will generate the message at 256 bytes from the start of this data
segment, not at absolute location 256. The linker will decide where it
is going to load this segment and will generate 256 nulls within the
segment, before the message.

If you've been following the above discussion closely you might now be
thinking, What if I want to generate some code that is to be moved by
me and executed at a different address, like for the . comM file example
above? The answer is to use the directives .PHASE and .DEPHASE;
.PHASE exp says to the assembler: generate the following code as if it
were to execute at address exp but leave it here. The linker also leaves
it where it was generated and does not move it. It is up to you, the
programmer, to move it to its execution address when appropriate.
.DEPHASE turns off this mode and reverts to the previous mode.

Gengo HiSoft Devpacs0 ver. 2 Page G-19

For example:

*r+
ip more
.PHASE CO000h
or a
ip p,Not Scr
call Get Screen
or a
ret

Not Scr call Get_Key
scf
ret
.DEPHASE

more ex de,hl

The code between .PHASE and .DEPHASE is left where it is by both the
assembler and the linker but the location counter is changed to be at
hex C000 after the . PHASE so that the code is generated as though it was
at that address. You can then move it when you want. The expression
after the . PHASE must be absolute and the mode after a . PHASE is ASEG.

In .REL mode, the symbol $ works as you would expect, returning the
value of the location counter, within this segment, at the beginning of
this instruction.

2.7 Symbol Table

In the following discussion, the words symbol and label are used to
mean largely the same thing. In general, the text that is found in the
label field is called a symbol. Every time a symbol is encountered for
the first time (either in the label field or in the operand field} it is entered
into a table.

LABEL LD HL, 3 ;LABEL in the label field
LD HL,LABEL;LABEL in the operand field

Page G-20 HiSoft Devpac8l ver. 2 Gens0

If the first occurrence of the label occurs in the label field then its value
(the value of the Location Counter at this point) is also entered into the
table. Otherwise the value is entered later whenever the symbol is
found in the label field. In _REL file mode, any symbol listed after the
EXTRN directive is also included in the symbol table.

If, at the end of the first pass, any symbol in the table does not have a
value associated with it (apart from those declared as EXTRNal) then the
message:

WARNING label absent
will be generated for each symbol without a value.

If, during the first pass, a symbol is defined more than once in the label
field then the error:

Re-defined symbol in <source filename>

will be generated since the assembler does not know which value
should be associated with the label.

Note that, by default, only the first 10 characters of a label (see Section
2.5 above) are entered into the Symbol Table in order to keep down its
size, this may be changed using the command S. The space allocated
to the Symbol Table may also be set (using the command B, see
Sections 2.2 and 2.3) and the default space allocated is 38% of the
available memory. As a rough guide as to how much space to allow for
the Symbol Table (in files producing less than about 8k of object code,
the default value should be sufficient} assume that each symbol
occupies 7+S bytes within the table, where S is the significant size of
your symbols. If you have a great number of macro definitions then you
may need to increase the size of the table since macro definitions are
also stored in the symbol table.

At the end of each assembly you will be given a message stating how
much memory was used by the Symbol Table during this assembly. It
is possible, however, to obtain a complete alphabetic list of the Symbol
Table at the end of the second pass (use the command T, see Section
2.3). Again, only the first S characters of any symbol will appear in this
list.

Gens80 HiSoft Devpac80 ver. 2 Page G-21

2.8 Relative & Absolute Values

In .coMmmode, all symbols are deemed to be absolute and can be added,
subtracted, multiplied etc. together at will, see Section 2.9 below.

In .REL mode symbols can be absolute or relative and there are
restrictions as to how these different types of symbols can be combined
together. A relative symbol arises within the CSEG or DSEG segments
where it is effectively relative to the start of this particular section e.g

*r+, 1+
CSEG

Absolute equ’ 5

Relative call Absolute
ip m,Relative

Absolute is an absolute symbol since it has one, unchanging value,
Relative, onthe other hand, is a relative type of symbol since its value
will depend on where this CSEG is loaded by the linker.

All symbols defined within ASEG are absolute whilst symbols defined in
CSEG and DSEG segments are absolute or relative depending on their
definition as in the above example. The rules for combining absolute
and relative symbols are given in Section 2.9 below.

If an expression evaluates to a relative type then the letter r is included

after the machine code representation in the assembler listing, this R
does not get generated in the codel

2.9 Expressions

The expression handling in GEN80 allows a wide range of operators to
be used, with full precedence which may be overridden by the use of
brackets. The items in expressions are either labels, in which case their
current value is used, or numbers or characters.

Page G-22 HiSoft Devpac80 ver. 2 Gen80

Numbers are one of the following:

1) A decimal number. Just a sequence of decimal digits.

2} A hex number. The hash character (# or ASCII 35 decimal)
followed by hexadecimal digits or a decimal digit (to distinguish
it from a label) followed by hex digits terminated by H.
e.g. #4A2E #AF 5AFOH 0AFH

Note that C050H is a label but 0C050H is a number.

3) A binary number. The % character followed by binary digits or
binary digits terminated by B.

€.g. %$11011111 1101B %1111 10101010B
Literal characters are represented by enclosing them in double or

single quotes. Thus all the following lines will produce the same object
code:-

LD A,65
LD A, #41
LD A,41H

LD A,%1000001
LD A,01000001B

LD A, wpwY
1d a, 'A!
A single quote character can be represented by "' " and double quote

by '"'.Arithmetic operations generally use signed 16-bit arithmetic,
but the result is given modulus 65536 and overflow is ignored. What
this means in real terms is that the result will almost always be what
is expected. As an example:- 3 * #4000 = #C000. Strictly speaking this
opcration should lead to an overflow using signed arithmetic (#C000 is
really -#4000), but the result returned is what would be expected (i.e.
3*4=12=4#C).

The only exception to this rule is during division where the operand is
a negative number (i.e. greater than #7FFr). As an example:-

#C00M / 2 = #E000 (i.e. -4/2=-2)

Gen80 HiSoft DevpacB80 ver. 2 Page G-23

When used with operators other than the + and - operators the
operands used must be absolute and not relative since, for example,
multiplying two relative values together is meaningless because you
have no idea what the end result is going to be since the linker decides
relative values. The results of combining absolute and relative values
with addition and subtraction are given below:

Operation | lst operand|2nd operand | Result type
+ absolute absolute absolute
+ absolute relative relative
+ relative absolute realtive
+ relative relative *illegal
- absolute absolute absolute
- absolute relative *illegal
- relative absolute relative
- relative relative absolute

* these operations are illegal and give an assembly-time error.

Relative values may be defined in the CSEG or DSEG segments but a
relative value defined in CSEG cannot be combined in any way with a
relative value defined in DSEG. Symbols defined in ASEG or when
generatinga .COM file are absolute in type and can be combined in any
way.

External symbols (defined with the EXTRN directive) may also be used
in expressions. Any expression (absolute or relative) can be added to
an external, but you may not have more than one external in an
expression. Thus if we have

EXTRN ext,ext?2
offset equ 4
label 1d hl,10

........

then the following are all valid:

1d hl,ext+2
id de, label+ext
1d de,ext +offset*2

Page G-24 HiSoft Devpac80 ver. 2 Gen80

But the following are illegal:

1d
1d
1d

hl, 2-ext ; can’t have =-external
de,ext*2
bc,ext+ext2 ;two externals in expression

Logical false is represented by 0 and logical true by -1 (or #FFFF),
although other non-zero values will be treated as true in most cases.
The logical operators are performed bitwise.

Note: The symbol $ returns the current value of the Location Counter.

Strings may also be used in expressions with comparison operators
only. This may not sound very useful but can be used to great
advantage in complex macro definitions.

A list follows of all the operators with their priority (1 is the highest
priority). Brackets () may be used to override the normal priority.

Operator Precedence Table

1)

Unary plus (+)

Unary minus (-)
Logical NOT (.NOT.)
Get high 4 bits (.HIGH.)

Get low 4 bits (. LOW.)

2)

Exponential (.EXP.)

3)

Multiplication (*)
Division (/)

Remainder (.M0OD.)

Shift left logical {. SHL.)
Shift right logical (. SHR.)

4)

Binary plus (+)
Binary minus (-)

5)

Logical AND (&) or (.AND.)

6)

Logical OR {.CR.}
Logical EXCLUSIVE OR (.X0OR.)

7)

Equals (=) or (.EQ.)

Signed less than (<) or (.LT.)
Signed greater than (>) or (.GT.)
Unsigned less than (.ULT.)
Unsigned greater than (.UGT.)

Gens)

HiSoft Devpac80 ver. 2

Page G-25

The following are allowable expressions in GEN8O:-

#5000-1label

16-%1110001

labell-labelZ+label3 These two expressions
labell- (label2+label3) are not the same
2.EXP.label

labell+ (2*.NOT. (label2=-1))

"A"+128

"A"_"all

label-$

$+(label2-labell)

Notes on the operators

.NOT. is a unary operator. To produce the same effect as
(labell#label?2) use the construct .NOT. (labell=label2)

.EXP. is used to raise a number to a power. Thus 3.EXP.4=81.
The expression following .EXP.is treated as unsigned and the
result will be modulus 65536 (i.e. overflow is ignored).

-SHL. and .SHR. shift the first argument left or right by the
number of bit positions specified in the second argument. Zeros
are shifted into the low-order or high-order bits. Either operator
may have a second argument that is negative. Thus
labell.SHL.-2 is equivalent to labell.SHR.?2

The five comparison operators (.EQ. .LT. .GT. .ULT. .UGT.)
will evaluate tological true (- 1 or #FFFF) if the comparison is true
and to logical false (0) otherwise. Thus (1.EQ. 1) will return the
value -1 and (1>2) willreturn the value 0. The operators .GT. and
.LT. deal with signed numbers whereas .UGT. and .ULT.
assume unsigned arguments. Thus (1.UGT.-1) is false (i.e. 1 is
not greater than 65535) but (1.GT.-1) is true (i.e. 1 is greater
than -1).

-HIGH. and .LOW. are monadic operators returning the top and
bottom 8 bits of their arguments respectively. For example:

LHIGH. #1234 returns #12
.LOW. #1234 returns #34

Page G-26 HiSoft Devpac80 ver. 2 Gen80

2.10 Assembler Directives

Certain pseudo-mnemonics are recognised by GENS80. These
assembler directives, as they are called, have no effect on the Z80
processor i.e. they are not decoded into opcodes, they simply direct the
assembler to take certain actions at assembly time. These actions have
the effect of changing, in some way, the object code produced.

Pseudo-mnemonics are assembled exactly like executable

instructions; they may be preceded by a label (obligatory for EQU, DEFL,
MACRO) and may be followed by a comment. The directives available are:

ORG expression

Sets the Location Counter to the value of the expression. In CSEG and
DSEG modes the location counter is set relative to the start of the section
whilst in ASEG and .COM mode it is set to an absolute value.

EQU expression

Must be preceded by a label. Sets the value of the label to the value of
the expression. The expression cannot contain a symbol which has not
yet been assigned a value.

DEFB expression{,expression,expression etc.}
DB expression{,expression,expression etc.}

DEFB or DB may be followed by as many expressions as can fitontoaline.
Each should be separated from the next by a comma and each must
evaluate to 8 bits or be a string. For each expression, the appropriate
byte is set to hold the value of the expression. Examples:

DEFB "4 message",CR
db 1,2,3,4,5
defb CR,LF, 'Press a key',0

Strings are enclosed with single or double quotes. To include the quote
character in a string type it twice. E.g.

defb "double "" single '" gives
double " single ' in the object code.

Gens)d Hisoft Devpacs80 ver. 2 Page G-27

DEFS expression{,expression}
DS expression{,expression}

Reserves a number of bytes equal to the value of expression at the
current Location Counter and fills that memory with the value of the
second expression or zero if there is no second expression.

DEFM “string”

Defines the contents of N bytes of memory to be equal to the ASCII
representation of the string, where N is the length of the string and may
be between 0 and 255 inclusive. The first character in the operand field
can be either ' or " and acts as the string delimiter.

DC "string”

DC works like DEFM except that the top bit of the last character in the
string is set. This is sometimes useful for messages where the message
printing routine detects the end of the message by checking the top bit.

dc "Hello there" gives

48 65 6C 6C 6F 20 74 68 65 72 ES

MACRO {parameters}

This direcuve must be preceded by a label and marks that label as
identifying a macro. The parameters for the macro follow. Each
parameter must start with the character @ and is separated from the
next by a comma. The actual macro definition follows and must be
terminated by the directive ENDM (see below).

ENDM

This directive is used to signal the end of a macro definition.

Gens80 HiSoft Devpac8O0 ver. 2 Page G-29

IF expression
COND expression

This is the first of the three conditional directives. The other two are
ELSE and ENDC. IF will evaluate the expression. If the result is false
(zero) then assembly of subsequent lines is turned off until either an
ELSE or an ENDC pseudo-mnemonic is encountered. if the result is non-
zero then assembly is left in its currert state. 1 rs are nestable to a
depth of 8.

ELSE

This pseudo-mnemonic normally {lips the assembly on and off. If the
assembly is on before the ELSE is encountered then it will subsequently
be turned off and vice-versa. However, if ELSE occurs in a nested IF
then assembly will only be flipped if assenibly was on hefore the
previous IF. If assembly was off then the ELSE has no effect.

ENDC
ENDIF

This pseudo-mnemonic returns assembly to the state it was in before
the previous IF.

The use of these conditional directives ties in the ohility ¢ contral
whether certain sections of code are compiled or not. They are often
used in conjunction with labels and may be used, say, to control
whether a certain block of code used for debugging purposcs is
assembled using the lines:-

IF DEBUG

- ;the debugging code sits hers and will only
- ;be assembled if the valus ot DEBUG is not §
e1DC

The feature may also be used if the same code is being used on several
different machines and then generation of the various machine-
specific sections of code may be controlled by the fines:-

Page G-30 HiSoft Devpac80 ver. 2 Gens80

IF expression
COND expression

This is the first of the three conditional directives. The other two are
ELSE and ENDC. IF will evaluate the expression. If the result is false
(zero) then assembly of subsequent lines is turned off until either an
ELSE or an ENDC pseudo-mnemonic is encountered. if the result is non-
zero then assembly is left in its currert state. 1 rs are nestable to a
depth of 8.

ELSE

This pseudo-mnemonic normally {lips the assembly on and off. If the
assembly is on before the ELSE is encountered then it will subsequently
be turned off and vice-versa. However, if ELSE occurs in a nested IF
then assembly will only be flipped if assenibly was on hefore the
previous IF. If assembly was off then the ELSE has no effect.

ENDC
ENDIF

This pseudo-mnemonic returns assembly to the state it was in before
the previous IF.

The use of these conditional directives ties in the ohility ¢ contral
whether certain sections of code are compiled or not. They are often
used in conjunction with labels and may be used, say, to control
whether a certain block of code used for debugging purposcs is
assembled using the lines:-

IF DEBUG

- ;the debugging code sits hers and will only
- ;be assembled if the valus ot DEBUG is not §
e1DC

The feature may also be used if the same code is being used on several
different machines and then generation of the various machine-
specific sections of code may be controlled by the fines:-

Page G-30 HiSoft Devpac80 ver. 2 Gens80

IF CpC
— ;this code will be assembled if the
- ;value of CPC is not O

ENDC
IF PCW
- ;this code will be assembled 1f the
- ;value of PCW is not 0
ENDC)
END

This directive signals that no more text is to be examined on this pass.
It might, for example, be used in a macro in conjunction with the IF
directive to abort assembly if the parameters used are inconsistent
with the proper operation of the macro, or potentially disastrous to the
system. As an example, assume a macro:-

MOVE MACRO @BYTES, @FROM, @TO
IF ABYTES<]1 ;if the number to move 1s zero
*Zzz2z ;make the listing stop here to
END ;3ee what’s happening and quit
ENDC

LD BC, €bYTES
Db HL, ¢FROM
LD DE, @TO
LDIR

ZNDM

This wouid stop a disastrous piece of code being produced by the line:-

MOVE L2-L1,5L1,L13

when L2 is the same as L1.

Gen80 HiSoft Devpacs0 ver. 2 Page G-31

.COMMENT delimited string

This directive allows multi-line comments: .COMMENT must start the
line (not in the mnemonic field) and you should follow the .COMMENT by
a space, a delimiter of your choosing followed by your comment text.
This comment text may then flow over as many subsequent lines as you
like and the assembler will treat everything as a comment until it finds
another occurrence of your chosen delimiter, for example:

.COMMENT / This is a long comment that flows over
a number of lines and this feature allows

your source Lo be commented more neatly. /

1d hl, label
bit 7, (hl) ;etc.

.280

Does nothing, this directive is included for compatibility with other
assemblers, specifically the Microsoft MB0™ assembler. .Z80 must
appear at the start of the line, not in the mnemonic field.

.PHASE expression

This is used in .REL file mode to allow code to be assembled to run at
a different address, given by expression, from where it is placed.
.PHASE can be used in ASEG, CSEG and DSEG modes but the mode is
absolute while .PHASE is in effect, use .DEPHASE to end this mode.

For example, say you are writing some code that needs to run at
address #C00¢ but your main program is designed to execute at #100.
This might be the case on an Amstrad CP/M Plus computer if you are
trying to access the video screen by the extended BIOS call SCR_RUN.
So you need some code ORGed at #C000 but you don't want it loaded
there by the linker. If you use ORG, the linker will load the code at the
ORG address, you don't want this because this would result in a very
large (approx. 48K) .coM file. So use . PHASE like this:

Page G-32 HiSoft Devpac80 ver. 2 Gens8o

;some code to move a block of screen memory
;must go in cocmmon memory

MoveScr
.PHASE #C000
push ix
pcy bc ;because SCR RUN corrupts BC
1dir ;move screen RAM about
ret
.CEPHASE
MSLen equ $-MoveScr

;some time lacer

SCR_RN equ Je%h

1d hl,MoveScr
1d de, #C000

1d bc,MSLen
1dir

id hl, ScrStart
1d de, ScrDest
id ix, Scrlen
1d bc, #C000

call Call USERF
defw SCR_RUN
retc
;3ome tlme later

LOCYMMENT Y routine to zall :xtended BIOS routine USERF
which taxes extended routine adadress inline /
Cal: USER:

push hl

push de

v R1l, ()

id de, 87 ;Lo give USERS
add hl,de

nop de

ex (sp),hl

ret

;rest of your code

Genso HiSoft Devpac80 ver. 2 Page G-33

The above is a fairly complex example of the use of . PHASE, included for
those people who have an interest in hacking the screen environment
onan Amstrad CPCA128 or PCW8256/8512/9512. In general, you use
.PHASE in .KEL mo-e when you would use ORG in .CCM mode.

.DEPHASE

Simply turns off the .HASE mode and reverts to the mode that was in
force prior to the previous .PHASE.

PUBLIC symbol, symbol, ...

Used to export symbols from this file that are to be used by other
assembly modules. This directive is only available when in .REL file
mode and tells the linker that the symbols have been defined values in
this assembly. Labels may also be declared PUBLIC by following the
label with 2 colons e.g. Message:: defm "Bello"

EXTRN symbol, symbol, ...
EXTERNAL symbol, symbol, ...

The symbols listed here are not defined in this source file but in some
other file. GEN8O accepts them as valueless and the linker will resolve
these references and fix-up the right values which will have been
declared PUBLIC is some other assembly. See Section 2.9 for the rules
regarding the use of externals in expressions. EXTRN can be used only
when generating .REL files.

2.11 Assembler Commands

Assembler commands. with one important exception (* Include! do not
aacct the code produced by GEN8O. They are used for produr ing and
irmatting the assembly listing. They are entered on lines that begin
with a * and may appear anywhere in the file. Two or more may appear
on the same line and they should be separated by a comma, tab or
space character. Only the first character of the command is significant
(and may appear in upper or lower case) and the rest of the command
up to the next space, tab, or comma is ignored. The following
commands are available:-

Page G-34 HiSoft Devpac80 ver. 2 Gens8o

*Eject

Causes a new page to be produced on the printer; carriage returns/
linefeeds are sent to the printer until a new page is reached. The
number of lines per page on your printer may be installed into GEN8O,
see GENSO Installation.

*12222

Causes the listing to be stopped at this point. The listing may be
reactivated by pressing any key on the keyboard. Useful for reading
addresses in the middle of listing. Note: *2 is still recognised after a *L-
; see below. *z does not halt printing.

*Heading string

Causes the first 32 characters of the specified string to be taken as the
heading which is printed on the top of every new page. An automatic
*E is done after *H. The heading is only sent to the printer or print file.
The end-of-line character is taken as the terminator of the string and
white space may appear as desired in the string. No other text may
appear on the same line as a *H command.

*Include filename
*Maclib filename

This powerful assembler command causes source code to be taken
from another file and assembled exactly as though it were explicitly
present in the file. *Include must be followed by a filename (separated
from it by white space). If the filetype is not specified it will be assumed
'0 be .GEN. *Include commands may be nested up to 4 levels (i.e. an
included file may contain a *Include etc.). The *Include command
encourages and facilitates the modular approach to programming as
it becomes possible to develop and test modules one by one and finally
assemble the whole program from an extremely small main including
file thius:-

Gen80 HiSoft Devpac80 ver. 2 Page G-35

*LIST ON PRINTER CN TABLEPRINT WRITE PRN FILE
;Main linking file

DEBUG EQU 0 ;The real thing

*Include MODULEL
*Tnclude MODULEZ
*I MODULE3

Alternatively you can use the .REL file mode of the assembler to gether
with the EXTRN and PUBLIC directives and a linker to assemble modules
separately and then link them together. INCLUDE can also be present
as a mnemonic for Macro80 compatibility.

*List, *Printer, *Maclist

These are the three assembler commands that are also top-of-file
options. They may thus appear on the command line and in the options
list. They are switches and details of their actions are described in the
section on top-of-file options, Section 2.3.

*Generate, "Quick, *Relocate

Top-of-file options, see Section 2.3.

2.12 Macros

In GEN80O macros are a powerful tool that let you greatly simplify
assembly language programming. When using macros in some less
sophisticated assemblers it is easy to generate huge code files, but
using the DEFL, conditional assembly and textual parameter facilities
of GEN8O, files may be kept extremely readable and yet ~ompact.

A macro may be defined thus:-

BC_DE MACRO GPARAM1, QRPARAM?2
LD BC, GPARAM1 ;The text of the
LD DE, GPARAMZ2 ;macro
ENDM

Page G-36 HiSoft Devpac80 ver. 2 Gen80

The pseudo-mnemonic MACRO is used to introduce a macro, and causes
the label (which must precede it) to be entered as a macro name into
the symbol table. The label thus becomes the narne by which the macro
will be called. An optional list of parameters follow. Each must be
preceded by the character @ and may contain any of the characters
legal in a label (See Section 2.5). Parameters are separated from each
other by space, tab, or comma characters, but these characters may
appear in a macro parameter if enclosed in single quotes (when the
single quote is repeated to stand for itself) e.g.

PRINT MACRO @P1
PUSH HL
LD HL,M@SYM
CALL MOUT ;A message printing routine
POP HL
JR LESYM :See below for use of @SYM
MBSYM DEFM "@P1"
DEFB 0
LESYM
ENDM
PRINT 'It''s a message' ;note, single quotes and
;It''s to give It's

The number of parameters allowed will rarely if ever be a practical limit.

The parameters declared on the first line of the macro are addressed
in the body of the macro by using the name with which they were
declared.

The macro definition is terminated using the pseudo-mnemonic ENDM.
All of the text between the MACRO line and the ENDM line is the macro
definition. The statements in the macro definition are not assembled
when they are encountered so they will not define labels, cause errors
or generate code. A macro may not be defined inside another macro
definition (nested definitions arc not allowed), but a macro may be
called from inside a macro {recursion is allowed) and a macro may thus
call itself.

A macro is called thus:-

BC DE #4474, -1

Gendo HiSoft Devpac80 ver. 2 Page G-37

i.e. the name occurs in the mnemonic field. It is then followed by any
actual parameters separated by delimiters. Delimiters are either
space, iab or comma characters. A parameter may optionally be
enclosed in single quotes and these will be stripped when the macro is
expanded. If the parameter contains space, tab, or comma characters
then the single quotes are obligatory. The quote character itself is
represerited by two successive single quotes.

Parameters are substituted textually. When the macro is invoked, each
parameter in the definition is replaced for the text that is in the
corresponding position in the definition. Thus in the example above,
the call to the macro will produce exactly the same code as if the
following text had been typed explicitly:-

LD BC, #4424
LD DE, -1

The following example will illustrate the real power of true textual
substitution as opposed to evaluation before substitution used in some
other assemblers:-

EXCH MACRO @GREG1l, @REG2
PUSH G@REGL
PUSH QGREGZ ;The body of the
POP @REG1 ;macro definition
POP (@REGZ2
ENDM
EXCH DE,BC ;calling the macro

The calling of the macro in the statement on the previous page will be
expanded to produce the code:-

PUSH DE
PUSH BC
FOP L

POP BC

As can be seen, a new and highly useful pseudo-instruction has been
created which can be used exactly as a normal assembler mnemonic
which allows the user to swap the value of any of the register pairs
(excepting SP), providing an extension to the standard EX DE,HL
instruction.

Page G-38 HiSoft Devpac80 ver. 2 Gendo

In addition to the parameters declared by the user every macro has an
extra implicit parameter @$YM. This returns a 4 digit hexadecimal
number which increases each time any macro is called. Its main use
is in generating labels which occur in macros. As an example:-

ABS MACRO
OR A
JP P,ABS@SYM
NEG
ABS@SYM
ENDM

then assuming that this was the only macro in a program it would
generate

OR A
JP P,ABS0001
NEG

ABS0001

when it is first called, and then

OR A
JpP P,ABS0002
NEG

ABSJ002

when next called. If ¢ $YMhad not been used then the same label would
have been produced twice resulting in an error. There is an example of
@$YM on your disc, called FACT.GEN. Here is a listing of it, bend your
brain to fathom out how it works!

.COMMENT * A macro to generate factorial n and assign it
to result. Does up to factorial 6 (6!) *

ract: Troro 2result, 2n
if An=1
@result defl 1
else

fact t@$YM,@n-1
Rresult defl t@SYM*(@n)

endc

endm

Gen80 HiSoft Devpac80 ver. 2 Page G-39

;a sample call

fact test, o
1d hl, test ;loads iL with 5 ractorial

Another method of inhibiting the possible error above 1s given below to
stimulate the imagination. The method above runs faster but may
generate large amounts of code. The method below is extremely
compact.

ABSLAR EQU 0
ABS MACRO
CALL ABSUB
IF LNOT L WBSLAZ
JR ABSEND
ABSUB CR Ky
RET P
NEG
RET
ABSLAB DEFL .NOT.RRSLAR
ABSEND
ENDC
ENDM

Macros may be called recursively 1.e. amacro may call itse!f, but macro
definitions may not be nested.

String comparisons ..y be used in macros (o give optiona: . arameters
or default values.

€.g.
CPM MACRG @FUN, @FCB
IF "@FCB">" "
D DF, P ;w2 have ~ Ind oo
ENDC
LD C, @FUN
CALL 5
ENDM
then

Page G-40 HiSoft Devpac80 ver. 2 Genso

LD E,A

cpM 2

CPM 26, 80h ;set dma
will expand to

LD E,A

LD cC,2

CALL 5

LD DE, 80h

LD c,26

CALL 5

This is an easy way of detecting missing macro parameters thus adding
considerable flexibility to the use of macros.

2.13 Assembly Listing

Each line of the assembler listing generated during the second pass of
GENBS8O has the following format:

6000 210100 25 label 1D HL,1 ;set HL to 1

The first entry in a line is the value of the Location Counter at the start
of processing this line, unless the mnemonic or macro in this line is the
pseudo-mnemonic EQU or DEFL (see Section 2.10) in which case the
first entry will represent the value in the Operand field of the
instruction.

The next entry, from column 6, is up to 8 characters (representing up
to 4 bytes) in length and is the object code produced by the current
instruction. This will be followed by the letter R if any operand
expression is found to be relative when assembling a .REL file.

Then comes the line number. Line numbers are integers in the range
1 to 65535. The line numbers corespond to lines in a particular file
rather than lines in the assembly; thus after a *I compiler command the
number becomes 1 and when listing the expansion of macros no line
numbers are output.

Gen80 Hisoft Devpac80 ver. 2 Page G-41

Columns 21 to 20+S {(where S is the length of labels defined by the s
command with default s=10) contain the characters of any labels that
may be present. If the line contains no labels then the field is left blank.

Next, in column 32 (assuming 10 character labels) is the mnemonic,
macro, pseudo-mnemonic or assembler directive.

Finally, from column 37 onwards (assuming 10 character labels), the
operands are output followed by any comment present. Comments
start at column 50 unless specified otherwise using the command ¢ for
comment format.

Page G-42 HiSoft Devpac80 ver. 2 Genso0

SECTION 3
Installing GEN8O

—— e ——

GENS8O does not require a correct installation to make it work
proper,but for maximum flexibilty you can change three aspects of
GENS8OQ:-

a) The printer page length

b) The printer page width
¢} The defaults for the top-of-file options

Type:
GENBOINS [RETURN]

then hit any key and N to the next question, this will read in the working
copy of GEN80 and then show the following menu:

GEN80 Installation Menu

. Return to CP/M

. Make changes

. Save GENBO as <working copy filename> (normally GEN80 .COM)
. Save GENB80O as another file

W N

Press 2 to make changes. You are now asked:-
Erter Printer Page Length ()

The current value is given in brackets (and will be 66 which Is the
normal value for most printers). If the printer page length is different
for your printer then type in the number (in decimal) and then press
[RETURN] . Pressing (RETURN] alone acts like typing the number in
brackets. Next you are asked to:-

Enter Printer Page Width ()

Gendo HiSoft Devpac80 ver. 2 Page G-43

Enter this value in exactly the same way as above. Both of these values
are built-in to GEN8O, and are only alterable by using the installation
program. Finally, a menu explaining the meaning of the various top-
of-file options is given, together with the current default settings and
you are asked:-

Do you wish to change this ? (Y/N) ?

The current default options are those that are built in to GEN8O. The
effect of them is exactly as though they had been typed in (preceded by
a *) on the top line of every file assembled by GEN8O. As an example,
ifyou always like macros expanded in the listing, and only use the first
six characters of labels then you should include M+, S 6 (or perhaps
Macrolist ON, SymbolLength 6) in the line. You can use either
(CTRL]-H(backspace) or [DEL] as adestructive backspace when typing
in the new default string. Press [RETURN] when you are satisfied.
Pressing [RETURN] alone will accept the current default settings.

Note that the options are of two types. The first is followed by a
parameter (either +/-/ON/OFF or a number or string) and the other is
not. The first type can be overriden by an explicit command on the
command line or the top line of the file e.g. a default of Comment 50 can
be overridden by the line at the top of the file *Comment 40. The second
type, however, is only alterable by re-using the install program e.g. if
N is a default then GEN8O will never generate an object file unless
reconfigured by the install program.

When back at the main menu, you can save GEN80 as GEN80.COM
(option 3) or as another file {option 4). Finally you can quit the install
program with option 1 (this does not save anything on the disc). It may
prove desirable to save two versions of GEN8O on the disc. One may
be a version configured for syntax checking:-

N,F,L-,M-,P-,W

so that no object file is created, but the second pass is forced and all
errors are sent to a disc file for easy inspection by the editor. If you
normally produce linkable code then you can build the r+ option into
your file,

The two options S and B (for controlling the significant length of labels
and size of symbol table) are parameters which are likely to be file-
specific. That is, they are dependent upon the particular file being
assembled (i.e. does it use long or short labels and does it have an
abnormal length symbol table). Thus common-sense might dictate
that these options should appear on the first line of a file, if required,
rather than being built- in to GEN8O (or having to be remembered on
the command line each time the file is assembled).

Page G-46 HiSoft Devpac80 ver. 2 Gen8o

SECTION 4
Quick Reference Guide

———— e N — A—

4.1 Error Messages

The following is a list of the error messages generated by GENS8O.

Label missing
One of the assembler directives EQU DEFL MACRO occurs on a line that
does not have an entry in the label field.

Illegal symbol

This message indicates that a label is badly formed and contains illegal
characters. Note that mnemonics and assembler directives are
acceptable as labels.

Symbol is Reserved Word
Alabel is declared which is a reserved word. Note that a reserved word
may constitute part of a label. Thus HLis an illegal label but HL1 is not.

Redefined symbol

This occurs if a label appears twice in the label field (if DEFL has not
been used the second and subsequent times). This may be caused
when seemingly different labels are present, if the label length (s) is
such that the first S characters of the labels are identical.

Bad mnemonic
Indicates that the mnemonic (or opcode) is illegal. This error will occur
if a macro is called without (or before) having been declared.

Bad expression
An expression is badly formed. This generally means that an operator
is missing or unrecognisable.

Expression syntax
The operand field of a line is badly formed. e.g. LD A,DE

Gens0 HiSoft Devpac80 ver. 2 Page G-45

Illegal Digit after # or %
A character which is not a valid hex digit is present after a # or a
character which is not a valid binary digit is present after a %.

Expression tco complex

The expression evaluator has been called upon to do too much. Three
levels of brackets are the approximate maximum. Split the expression
into simpler units.

Division by zero
Self evident

Bad dot cperatcr
An invalid dot operator has been used in an expression. This means
that a dot operator is badly formed eg .LT or .NOTT.

Numeric expected
This occurs when an expression contains a register where a number
or a label is expected. e.g. LD A, -HL

Missing)

This error indicates that an expression is missing a closing bracket.
The expression may be one containing an indirection off a registere.g.
LD HL, (32*LABEL or LD A, (HL

Illegal index
There are no brackets around an expression (IX+n) or (IY+n).

JP (IX+n), JP (IY+n) illegal
Self-evident

Mismatch of registers
Two of the register pairs HL, IX, IY occur in the same line, for example
ADD HL, IX

Bad command
This error indicates that the initial letter used for a command is
incorrect or the syntax of a command is bad e.g. *A or *L

Bad filename
The name of a file to be *Included is badly formed or does not exist.

Page G-44 HiSoft Devpac80 ver. 2 Gens80

Too many includes
Includes may be nested up to four deep.

Bad directive

This error occurs if an assembler directive has the wrong number of
parameters :

e.g. IF LABEL,6

Forward reference
This error indicates that the expression after one of the directives ORG
EQU DEFL contains a label whose value is not yet declared.

Macro parameter stack overflow

The total number of characters generated during the expansion of a
macro is too great. The maximum is 255. This error will generally occur
when a macro is recursive, but may also occur if macros are nested i.e.
a macro uses a macro etc.

Bad Macro parameter
Macro parameters must be preceded by @ when the macro is declared.

Nested macro definition
A macro cannot be defined within another macro definition.

Bad ENDM
The directive ENDM occurs without a preceding directive MACRO.

Re-defined Macro
You have attempted to re-define an existing macro name.

Illegal for COM file
The directives ASEG, CSEG, DSEG, PUBLIC, EXTRN, .PHASE and .DEPHASE
can only be used when generating a .REL file (having used R+).

Expression must be absolute
The type of this expression cannot be relative, it must be absolute. (e.g.
after IF.)

String not terminated
A string has not been closed with either ™ or *. Version 1 users please
note that this wasd not previously enforced.

Gens0 HiSoft Devpac80 ver. 2 Page G-47

Illegal DEFM
_The structure of this DEFM statement is incorrect.

Error in Conditional
The nesting of your conditional statements has gone awry.

Out of range

This is the only error that can occur during the second pass. It most
frequently indicates a relative jump or DJNZ out of range. In general it
indicates that the value of an expression is too large to be held in one
byte e.g. LD A,256 or DINZ $-300 etc.

The following error messages arise from fatal errors. A fatal error is one
that will terminate the assembly process immediately and return to
CP/M.

No Source File:

The source file specified on the command line does not exist. This error
is suppressed if the D option is specified, allowing the assembly of small
files without the use of an editor. This is a fatal error.

Symbol Table tco big!

The size assigned tu the Symbol Table by the B option is too large for
the system. There is not enough space for the source and object
buffers. This is a fatal error.

Used all #XXXX bytes of Symbol Table!
The Symbol Table has grown too large to fit into the space assigned to
it. This is a fatal error.

Disc full!
Self-evident. This is a fatal error.

Directory Full!
Self-evident. This is a fatal error.

Page G-48 HiSoft Devpac80 ver. 2 Gen80

4.2 Reserved Words

The following is a list of Reserved Words within GEN80. These symbols
may not be used as labels although they may form part of any label.

A B C D E H L I R §
AF BC DE HL IX 1IY SP
C NC Z NZ M P PE PO

Reserved words may appear in upper or lower case.

4.3 Valid Mnemonics

ADC ADD AND BIT CALL CCF Cp
CPD CPDR CpI CPIR CPL DAA DEC
DI DJINZ EI EX EXX HALT M
IN INC IND INDR INI INIR JP
JR LD LDD LDDR LDI LDIR NEG
NOP OR OTDR OTIR OouT OUTD OUTI
POP PUSH RES RET RETI RETN RL
RLA RLC RLCA RLD RR RRA RRC
RRCA RRD RST SBC SCF SET SLA
SRA SRL SUB XOR INCLUDE

Mnemonics may appear in upper or lower case.

4.4 Assembler Directives

.COMMENT .DEPHASE .PHASE .280

ASEG ASET COND CSEG DB DEFB
DEFL DEFM DEFS DEFW DS DSEG
DW . ELSE END ENDC ENDIF ENDM
EQU EXTERNAL EXTRN IF MACLIB MACRO
ORG PUBLIC

Assembler directives may appear in upper or lower case.

Gend80 HiSoft Devpac80 ver. 2 Page G-49

4.5 Top-of-File Options

BufferSymbols CommentPosition
DirectInput ForceSecond
GenerateSYMfile KillObject

List Maclist

NoOb ject Printer

Quick Relocate
SizeOfLabels TzolePrint
Upper case VirtualDisking
WritePRNfile

Top-of-file options may appear in upper and/or lower case.

4.6 Assembler Commands

*Eject
*Heading
*Include
*List
*Maclist
*Printer
*Zzzzz

Assembler commands may appear in lower and/or upper case.

4.7 Operators

All the operators are listed in order of precedence.

1) + - .NOT. .HIGH. .LOW.

2) .EXP.

3) * / ? -MOD. .SHL. .SHR.

4) + -

5) & .AND.

6) .OR. .XOR.

7) = LEQ. > .GT. < .LT. LUGT. .ULT.
Page G-50 HiSoft Devpac80 ver. 2 Gen80

4.8 .REL File Format

A GENS8O .RELfile contains information encoded in a bit stream. In the
unlikely event that you should want to interpret this bit stream, we give
its structure below:

If the first bit is a 0, then the following 8 bits are loaded at the current
value load of the location counter.

If the first bit is a 1, then the following 2 bits mean:

00

01

10

Special link item, these items are described below.

Program relative item. The next 16 bits are loaded after being
added to the program segment origin.

Data relative item. The next 16 bits are loaded after being added
to the data segment origin.

A special item consists of the following:

1.

A 4 bit control field that specifies one of the 16 special link items
described in Table 4.8.1.

An optional value field that is a 2-bit address-type fieldand a 16-
bit address field. The address-type field is one of:

00 absolute
01 program relative
10 data relative

an optional name field which is a 3-bit count followed by the
name in 8-bit ASCII.

Gendo HiSoft Devpac80 ver. 2 Page G-51

Table 4.8.1 Special Link Items

Field Meaning

These link items are followed by a name field only;

0000 This symbol is declared PUBLIC in this module.

0010 The name of this program.

These link items are followed by a value field and a name field:

0110 Chain external. The value field contains the head of a chain that
ends with an absolute 0. Each element in the chain contains the
previous occurrence of the symbol given in the name field so that
the linker can patch-up all references to this external.

0111 Define entry point. The value field gives the value of the symbol
in the name field.

These link items are followed by a value field only:

1001 External plus offset. The value in the value field after all chains
are processed must offset the following two bytes in the current
segment.

1010 Define data size. The value field contains the number of bytes
in the data segment of this module.

1011 Set location counter. Set the location counter to the value
indicated in the value field.

1101 Define program size. The value field contains the number of
bytes in the code segment of this module.

1110 End module. Defines the end of this module. If the value field
contains a value other than absolute, the value is the start
address for the linking program. The next item in the file will
start at the next byte boundary.

This item has no value field or name field:

1111 End file. Follows the end module item for the last module in the
file.

Page G-52 HiSoft Devpac80 ver. 2 Gen8o

