
~-USBORNE INTRODUCTION TO

Usbome CompulerBooks

USBORNE INTRODUCTION TO

~@~{}oTI~~ ~@@~
v©lli 10~@TIliJliJ~lli£)

Usa Watts and Mike Wharton

Illustrated by Naomi Reed and Graham Round
Designed by Graham Round and Lynne Norman

6502 consultants: A. P. Stephenson and Chris Oxlade

2

Contents
4 What is machine code?
6 Getting to know your computer
8 The computer's memory

11 Hex numbers
12 Peeking and poking
14 Inside the CPU
16 Giving the CPU instructions
18 Translating a program into hex
20 Finding free RAM
23 Loading and running a program
27 Adding bytes from memory
28 Working with big numbers
29 The carry flag
30 Big number programs
32 Displaying a message on the screen
35 Jumping and branching
38 Screen flash program
40 Going further
41 Decimallhex conversion charts
42 Z80 mnemonics and hex codes
45 6502 mnemonics and hex codes
46 Machine code words
48 Index

First published 1983 by Usbome Publishing Ltd, 20 Garrick Street, London WC2E 9BJ, Er,gland.
, 1983 Usborne Publishing .
All rights reserved. No part of this publication !l'ay be reprod~ced , store~ in a retrieva~ syste.m or tansmi~ted in
any farm or by any means , electronic. mechamcal, photocopymg, recordmg or otherwise, wlthout the pnor
permission of the publisher. . .
The name Usborne and the device -:::- are Trade Marks of Ushorne PublIshmg Ltd.
Printed in Spain by Printer Industria Grafica, S. A. - Dep6sito Legal B. 33.755/1983

About this book
This book is a simple, step-by-step
guide to learning to program in
machine code. Machine code is the
code in which the computer does all its
work and programs written in machine
code run much faster and take up less
memory space than programs in
BASIC. A machine code program,
though, is much more difficult to write
and less easy to understand than a
program in BASIC. .

This book takes you in very easy
stages through the basic principles of
machine code. It shows you how to
write simple machine code programs,
for example, to add two numbers or
flash a message on the screen, and how
to load and run a machine code
program on your computer.

The book is specially written for
computers with a Z80 or 6502
microprocessor. * The microprocessor
is the chip which contains the
computer's central processing unit and
computers with different
microprocessors understand different
machine code. All computers with the
same type of microprocessor, though,
use the same machine code.

Machine code is difficult and very
laborious, with lots of rules to obey and
small details to remember. Don't worry
if you find it very hard at first. It seems
confusing as you cannot read and
understand a program in machine code
- it's just a string ofletters and numbers.
Bugs are very difficult to spot, too, and
have disastrous results if you miss them.
When you are working in machine code
you have to be very careful and
methodical and check everything two
or three times.

Unless you are really dedicated there
is no point in writing long programs in
machine code - some things can be
done just as well in BASIC. For certain
tasks, though, such as speeding up the
action in games programs or creating
fantastic screen effects, you need to use
machine code. This book shows you
how to make your programs more
exciting by using short machine code
subroutines in BASIC programs.

At the back of the book there are
some conversion charts to help you
when you are writing machine code,
and a list of machine code words to
explain all the jargon. There are also
lots of puzzles and ideas for short
programs to write, with answers on
page 44.

"The Spectrum and ZX81 (Timex 2000 and 1000) use the Z80 microprocessor and the VIC 20, the BBC.
the Atari computers arid the Orie use the 6502. The Commodore 64 uses the 6510 and understands
6502 machine code.

3

4

What is machine code?

Machine code is the code in which the
computer does all its work. When you give
a computer a program in BASIC, all the
instructions and data are translated into
machine code inside the computer.

Inside the computer, the binary numbers
are represented by pulses of electricity,
with a pulse for a I and no pulse for a O. The
pulses and no-pulses are called "bits", short
for binary digits.

4

Each task the computer can carry out, such
as adding two numbers or clearing the
screen, involves a sequence of several
instructions in machine code. When you
give the computer a BASIC command, a
special program called the "interpreter"
translates your command into the machine
code instructions the computer

"'You can find out more about binary on page 28.

In machine code, each instruction and
piece of information is represented by a
binary number. Binary is a number system
which uses only two digits, I and O. You can
write any number in binary using Is and
Os.'"

The bits flow through the computer in
groups of eight and each group is called a
"byte" . Each byte of pulses and no-pulses
represents the binary number for one
instruction or piece of information in
machine code.

instruction.

understands.
The term machine code is also used to

refer to programs written in a form which is
much closer to the computer's code than
BASIC is. In a machine code program you
have to give the computer all the separate
instructions it needs to carry out a task such
as clearing the screen.

Programming in machine code

There are several different ways of writing machine code programs. You could write all the
instructions in binary numbers, but this would be very tedious. Instead, you can use another
number system called hex, short for hexadecimal. Once you get used to it, hex is much
easier to work with than binary.

Machine code programs can also be written in a code called "assembly language". In
assembly language each instruction to the computer is represented by a "mnemonic"
(pronounced nemonic) - a short word which sO)lIlds like the instruction it represents.

instruction.

This is a program for
computers with a 280
microprocessor . You
can find out how the
program works later in
.thebook.

This is part of a machine code program in
hex. The hex number system has sixteen
digits and uses the symbols 0-9 and A-Flo
represent the numbers 0 to 15. (You can find
out more about hex later in the book.) The
hex number at the beginning of each line of
the program is an instruction (e.g. 3E). It is
the hex equivalent of the binary code for
that instruction.

100 I 10 10
I 0 1 000 10
10 00000

1D A is the mnemonic
for an instruction.

LO 4, 02-~------'
400 >02and04'---'--_~

4 , 04 are data. This is a
LO (!F57), A program to

--,....., "1 add2+4.

RET \

Th; Sisanaddr
COlllputer' ess .in the

s memory.

This is the same program in assembly
language. Each line contains the mnemonic
for one instruction and is the equivalent of
the hex number in the sart)e line on the left.
For example, the mnemonic LD A

" pronounced "load A") means the same as
the hex number 3E. In both these programs,
"each line contains an instruction which is
the equivalent of a single instruction in the
computer's own code.

100 I 10 I 0
10100010
10100000

" Computer's
own code.

To give a computer a program in assembly
language you need a special program
called an "assembler" which translates the
mnemonics into the computer's code. Some
computers have a built-in assembler; with
others, you can buy an assembler on
cassette and load it into the computer's
memory. Alternatively you can write a
machine code program using the -

mnemonics of assembly language (they are
easier to remember than numbers), then
translate them into hex before you give
them to the computer. Some computers will
accept hex numbers; with others you have
to give them a short program, called a "hex
loader". which translates them for the
computer. There is a hex loader program
on page 24 which you can use to load the
machine code programs in this book.

5

6

1.

Getting to know your computer
When you program a computer in
machine code you have to tell it exactly
what to do at each stage: where to find
and store data, how to print on the
screen and so on. (When you are
working m BASIC, special programs
inside the computer take care of all this
for you.) In order to give the computer
the correct machine code instructions,
you need a good idea of what is going
on inside your computer. The pictures
on these tw o pages show the parts
inside a home computer, and what they
are for. You can find out more about
them on the next few pages.

What the chips do
This picture shows the work carried out by
the different chips inside the computer.
Messages flow between the chips in the form
of bytes, i.e. groups of eight pulse and no­
pulse signals representing data and
instructions.

The ROM chips

ROM stands for "read only memory". The
machine code instructions which tell the
computer what to do are stored in the ROM
chips. It is called a read only memory
because the computer can only read the
information in ROM, it cannot store
new information there. On most home
computers, the interpreter (the
program which translates BASIC
into computer code) is in the

Inside a computer

Inside the keyboard of a microcomputer
there is a printed circuit board. This has
metal tracks printed on it, along which
electric currents can flow. Attached to
the printed circuit board there are a
number of chips.

bus

Bytes of computer code flow
between the chips along the tracks
ofthe printed circuit board. There are three
separate systems of tracks for carrying bytes
for doing different jobs. Each system of
tracks is called a "bus".

"random access
memory". This is where

the programs you give the
computer are stored while the

computer is working on them. It is
called a random access memory

because the computer can find, or access,
any piece of information anywhere in the

memory. When you switch the computer off
the inf.ormation stored in RAM is wiped out.

The proper name for a chip is an
"integrated circuit" and inside each chip
there are microscopic electrical circuits.
All the computer's work is done by
streams of pulses representing

Clock
This is a quartz crystal which pulses millions of
times a second and regulates the flow of pulses
inside the computer.

The microprocessor

instructions in binary code, flowing
through the circuits in the chips. There
are different chips for carrying out
different tasks. The work done by the
different kinds of chips is shown in the
picture below.

The microprocess.or chip holds the computer's
central processing unit, .or CPU. This is where all
the computer's w.ork is d.one. The CPU does
calculations, compares pieces of data, makes
decisions and also co-ordinates all the other
activities inside the computer. The information
telling the CPU what to do is in the ROM. 7

The computer's memory
The easiest way to think of the computer's memory is as lots of little boxes, each of
which can hold one byte, i. e. one instruction or piece of information in machine
code. Each box in the memory is called a "location", and each location hasa
number, called its "address", so the computer can find any box in the memory.

Different areas of the memory are used for storing information for different tasks
and a chart giving the address w here each area starts is called a "memory map".

When you are programming in machine code you have to tell the computer
where to find or store each instruction or piece of information. You do this by giving
it the address of a memory location. You even have to tell it w here to store the
machine code program itself, so you need to get to know the memory map of your

computer.

The memory map
The picture on the right shows the memory map of
a home computer. There should be a map for your
computer in your manual. The memory is
organized differently in different makes of
computer, so your map will look different from this
one.

The memory map may be drawn as a column
like this, or horizontally. The address at which each
of the different areas in the memory starts is given
alongside the map and it may be a decimal number
or a hex number, or both, as here. In this book hex
numbers are distinguished by a & sign
(ampersand) before the number. Your manual may
use a different symbol, e.g. $, %, or #.

The highest address in user RAM
is called "RAMTOP", or on some
computers, "HIMEM".

Operating system
This area contains a group of programs
called the "operating system" or
"monitor", which tell the computer how to
operate. All the programs are in machine
code. There are programs which tell it
how to do mathematical calculations,
programs to clear the screen,find
a random number, scan the
keyboard and all the other
things the computer has
to do in the course of its
work.

User RAM

The bounda ry
between user
RAM and
variable sto rag e
moves up ordown
depending on
how much space is
needed for variables. JIJ_

The memory map includes
both ROM and RAM. The
operat ing system and the
BASIC interp reter are in
ROM and the rest ofthe
areas on the map are in
RAM .

Memory addresses

Inside the computer, memory addresses are
represented by two bytes of computer code, i.e. 16
pulse or no-pulse signals or "bits". The largest
possible memory you can have on a
microcomputer which uses a Z80 or 6502
microprocessor is 64K (ROM and RAM combined).

- This is because the biggest number you can make
with 16 binary digits is 65535, so this is tb2 highest
possible address. This gives 65536 locations,
numbered from 0 to 65535. Each location holds one
byte, 1024 bytes make a kilobyte (K) and 65536
bytes equal 64K (65536 + 1024 = 64).

&6000 24576 On the ZX81 (Timex Input/ output

&5COO 23552
1000) the boundary These memorylocallons are linked to the
between th,· 0"'0"0' input/output sockets on the computer.

memory and user ":::;;:::=============~

&2EOO

RAM changes \1
depending on the Screen memory
size of th e n mO'o no U Sometimes called the "diaplay file", this
in user

If you add extra memory
toyourcomputer, the
add resses of some ofthe
areas may change. Th ere
shou ld be information
about this in your manual.

pan of the memory boIdsinformation
diaplayed on the screen. Any information
stored in the screen memory is
automatically shown on the screetl- Most
microcomputers have a "memory mapped
diaplay" In which each location in the
screen memory holds the information for
one puticular position on the screen.

User RAM
This is where the programs you type in are
stored. The data for variables and arrays is
stored at the top of user RAM.

Reserved for use of
the operating system

These RAM locations are used by
the computer to keep track of
everything going on while it carries
out a program. For instance.
information about the position of the
cursor, the current screen colour,
which key is being pressed and the
current program line number are all
stored in this area. It is divided up
into smaller areas for carrying out
different tasks. Some computers
have a second map of this area. You
can find out more about it over the
page.

9

10

Inside the computer's workspace

This picture gives a closer view of the area ofthe computer's memory reserved for use by
the operating system. There may be a second detailed map of this area in your manual, ora
list of the various addresses and what they are used for. On some computers (e.g.
Sinclair/Timex), the locations used by the operating system are not in one group and are
distributed throughout the memory.

Memory pages

User-defined graphics
If you make up your own graphics characters they are
stored here.

Buffers
These are temporary stores to hold data coming in from
the keyboard, or being sent to a printer or cassette.

Machine stack
Also called the processor stack, the CPU usesthese
locations to store addresses while it is working ona
machine code program.

BASIC stack
Also called the GOSUB stack, this is for storing the line
numbers used in BASIC GOSUB and GOTO commands.

Calculator stack
This is the CPlTs temporary store for numbers used in
calculations.

Systems variables
These are a series of memory locations where the CPU
stores information about what is happening inside the
computer. For instance, there are separate locations for
recording the current position ofthe cursor on the
screen, which key is being pressed and the address of
the area where variables are stored.

More about stacks

To help the computer find its way
around, the memory is subdivided into
"pages". On a microcomputer, one page
is 256 locations and four pages make one
kilobyte (4 X256 = 1024).

Locations 0-255 are sometimes
referred to as page zero. Different areas
of the computer's memory often start at
the beginning of a new page. For
example, on the memory map on the
previous page, user RAM starts on page
45, counting the first page as page zero.

The computer uses the stacks to store
temporary data in a particular way. The last
item to be stored must always be the first to
be retrieved. This is called LIFO storage:
last in, first out.

Hex numbers
In a machine code program, numbers and addresses are always written in hex.
Below you can find out how to convert decimal numbers to hex, and vice versa.

Decimal 0 1 2 3 4 5
Hex 0 1 2 3 4 5

This chart shows the hex diQ'lts (0-9 and
A-F) and their decimal values. To make
numbers over 15 (F) you use two (or more)

Decimal

6

6

7 8 9 10 1 1 12 13 14 1 5

7 8 9 A B C D E F

diQ'lts, Just as you do m the decnnal sY.a!em
to write numbers over 9. The value ot each
digit depends on its position in the number.

4CA is hex i
for 1226.

Hex
1000s lOOs 10s ls

1 2 2 6 ~
2565 165 1s

4 C A

In the decimal system the first digit on the
right of a number shows how many Is there
are, the second shows the number of lOs, .
the third, the number of lOOs (102

), etc.

In a hex number the first digit on the right
also shows the number of Is but the next
digit shows the number of 16s, and the third
digit shows the number of 256s (162

).

Converting hex to decimal
To convert a hex number e .g. 4CA, to
decimal, look up the decimal for each of
the digits in the number. Then multiply
each digit by the value of its position in the
number and add up the answers.

~I ~5~6S~1 ~~6s.\--1 ~~s I l1iP
4 12 10 Decimal value l ~

x 256 x 16 ~ ,...~_

1024 + 192 + 10 = 1226 Can you convert
&A7 to decimal and
decimal 513to hex?
(Answers page44')J

Decimal to hex
To convert a decimal number e.g. 1226, to
hex, first you divide by 256 to find how many
256s there are in the number. Then you
divide the remainder by 16 to find the
number of 16s and the remainder from this
sum gives the number of Is. Finally, convert
the answer to each sum to a hex digit. *

Converting hex addresses

MCA is 1226 m decimal.

1226 + 256 = 4 4is4 inhex
remainder 202

202~ 16= 12 12isCinhex
remainder 10 10 is A in hex

1226is4CAinhex

In a hex address, e.g. 5C64, the two left-hand digits show which page (see opposite) the

location is on and the second pair of digits shols:t:h:e:==:o;ntt'h~e:~:'~~~~-l
Hex to decimal

Address &5C64

Page number = &5C = 92 decimal
Position on page = &64 = 100decimal

92 x 256 = 23552 + 100
= 23652

Hex address 5C64 is 23652 decimal.

To convert a hex address to decimal, first
convert each pair of digits to a decimal
number, as shown above. Then multiply the
page number by 256 (there are 256
locations in a page) and add the number for
the position on the page.

"'See page 41 for how to do this on a calculator.

To convert a decimal address to hex you
have to divide by 256 to find the memory
page number. The remainder gives the
position on the page. Then you convert the
figures to hex digits as described above.

I I

Peeking and poking
Two BASIC words, PEEK and POKE, *
enable you to look at the bytes stored in
the computer's memory 10catJons and
change them You use PEEK and POKE
with the decimal, or on some
computers, hex, address of a memory
10catJon. Remember, to give the
computer hex numbers you must type a
sign such as &, # (called hash) or $
before the number. Check this in your
manual as it varies on different
computers and some computers will
accept only decimal numbers.

Using PEEK

"'11 ,..

You can peek into any location in your
computer's memory, but you can only poke
new bytes into RAM locations because the
bytes in ROM cannot be changed.

"'" PRINT PEEK(1234S)
46

10 FOR J=70t) TO 725
RUN
36~ 2 7. 2 34,56. 2 1 . <'. O.

...

PRINT PEEK (720)
240
PRINT PEEK(8643)
o
LET A=PEEf< (1024)
PRINT A
176

.....

20 PRINT
30 NEXT J

...
To tell the computer to look in a memory
location you use PEEK (or your computer's
command) with the address of that location.
To see the result on the screen, use PRINT
PEEK, or store the result in a variable using
LET and then print out the variable, as
shown above left.

Poking

PEEK (J};", ";
0 . 0 .45. 32 . 67 .121.45 .
4 7 .89.63 ,21. 0 .87 .241.
2(1~. 225.6 :; . 87 .16,

These are the
decimal equivalents

.... of bytes of
computer code.

Try writing a short program using a FORI
NEXT loop, like the one in the centre above,
to print out the bytes from a series of
locations. Look at your computer's memory
map and experiment with addresses in
different parts of the memory.

PQl(E 167 6 3 . 60
PRINT PEEV(1676 3)
60

This tells the
computer to put60
in location 16763.

Use PRINT PEEK
to seethe result.

The picture above shows you how to use
POKE. You can poke anywhere in RAM, but
if you poke new values into the area
reserved for use by the operating system
you may disrupt the workings ofthe
computer. You can restore it to normal by

12 switching off and on agaln. Try writing a

short program like the one above to poke
several numbers into a series of locations in
user RAM.

The numbers you poke must be between
o and 255, the highest number than can be
represented with eight binary digits (one
byte of computer code).

"Some computers use different commands, e.g. the BBC uses a? mark. Check your manual.

T

What the numbers mean

When you tell the computer to print the
contents of a memory location on the
screen, the result is always a decimal
number from 0 to 255. This is because each
memory location can hold one byte, and the
highest value that can be represented with
eight binary digits is 255. There are only 256"
(0 to 255) possible different bytes of
computer code and each byte can have
several different meanings for the
computer.

For example, the binary number
00110000 (decimal 48) could be the code fOl
one of the instructions in the instruction set,
for a letter on the keyboard, or for part of
the address of another memory location
(each address consists of two bytes).

Now find the screen memory for your
computer, then try poking numbers into
screen memory locations. You do not need
to use PRINT PEEK because bytes stored in
the screen memory are automatically
displayed on the screen. This time the
computer interprets the number as the
code for a character.'

10 L E T J=screen
addres s

Put an address in
your computer's
screen memory
here.

4 0
SO

Type in the adaress for
your computer's
operating syste~ ...

Look in your manual to find the address in
ROM of your computer's operating system
and then try this program. The numbers
which appear on the screen are the decimal
equivalents of bytes of machine code from
one of the programs in the operating
system.

addr"ess.

Most computers use the ASCII code
(pronounced "askey"), to decide which
numbers represent which characters, but
some, such as the ZX81 (Timex 1000) use
different numbers. The VIC 20 has a special
set of numbers, called screen codes, for
characters to be displayed on the screen.
There should be a list of your computer's
character codes in your manual.

xxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxx

20 LET C=3 3
30 POKE J ,e
40 L ET J = J +1 ~

x x x xx x x xxx x xx x x xx x xx ~;}; x ~:;< x >:x xx xx
xxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

'-,/'-.-....... _/'-..:~'~t~ .. "'ll "Location 1120.
5 0 LET C=C+l
6 0 IF C< = 125 T HEN GDTO 30
70 STOP

Try a short program like the one above to
print your computer's character set. The
program uses ASCII codes, starting with 33,
the code for!, and ending with code 90.
Other numbers in the range 0-255 are for
special keys such as SPACE and DELETE,
for printing the alphabet in inverse or
flashing characters, and for graphics
characters.

First location in screen memory.

On most computers you can print a
character in a particular position on the
screen by working out the address of the
location for that position. For example, if the
screen memory starts at location 1024 and
the computer can print 32 characters on a
line, the address for the first position on the
fourth line will be 1024+(32 x 3) which is
1120. (Address 1024 is counted as zero.)

*On the Spectrum (Tirnex 2000) the information for each position on the screen is stored in several
different memory locations and you cannot print characters by poking codes into the screen memory.

13

Inside the CPU
All the computer's work is done by
fe tching bytes of instructions and data
from the memory, then carrying out the
instructions in the CPU

There are three main areas inside the
CPU the registers where bytes of data
are held while they are processed; the
ALU, or arithmetic/logic unit where
bytes can be added, sub tracted or
compared, and the control unit which
organizes all these activities.

Add two
bytes.

Jump to
instruction 6.

Transfer a
byte from one
register to
another.

"Flip the
that is, make
all the 1sinto
Osandallthe
Os into 1s.

The arrangement of the registers in
the Z80 and 6502 chips is different, as
shown in the pictures below.

pictures show the sort of instructions adding two numbers and displaying the RAM,loads a data byte into the registers
IWJllC.n {[le CPU can carry out. They are all result on the screen, involves over a and then performs the operation specified

simple. It can fetch bytes from the hundred simple steps like these and the by the instruction. In machine code, you
Imemol1' arId put them in the registers, move CPU can carry out over half a million each tell the CPU what to do with the bytes in the

one registerto another, process second. registers, but the ALU and control unit carry
ITn,>mm the ALU and store the results in the For each operation the control unit out their work automatically and you cannot

TheZ80registers ~~~~E~ve~n~t~h~e~~~~~,~su~c~h~as~ ________ J-____ ~f~et~c~h~e~san~~~~~~~~~~~~o~r~~t~e~ll~th~e~m~w~h~at~t~o~d~o~. ____ ~ __ ~ ____ ~
The main difference between the Z80 and the 6502 chips is that the ZeO has more registers.
This means that bytes can be stored temporarily in the CPU, whereas in the 6502 they have to
be sent back to the memory.

A stands for "accumulator".
It is the most important
register in the CPU and
stores bytes on their way to
and from the arithmetic!
logic unit. It can only hold
one byte at a time.

/

I
A

1/ V

l
B

V V

t
D

I
~ V

1-1
I I

IL: V

F is the "flags register". It holds eight
bits but only six of them are used.
Each bit acts as a signal. For
example, the carry flag is set to 1
when an answer is greater than 255
and will not fit in one byte and the
sign flag shows whether a number is
positive or negative.

hil I
' 11

~
11

E
11

L
I

IX and IY are called
"index registers".
They can each hold
16 bits and they are
used in certain
instructions to work
out the address of a
byte in the memory.

"'" IX

I
"'-

IY

I
"'-SP
I
"'-PC
I

" B, C, D, E, H and L are general
purpose registers where bytes
can be stored on their way to or
from the memory. Each can hold
only one byte but they canbe
grouped together in pairs, e.g.

SP stands for "stack
pointer". It is a 16-bit
register and stores the
address of the last item in
the machine stack - the
place where the CPU
stores temporary data.

PC IS the "program counter".
It is a 16-bit register and it
holds the address of the next
byte to be fetched from the
memory. The number in the
program counter increases
by one each time an
instruction is' carried out.

14 BC, DE or HL to hold two bytes.

-

The 6502 registers
The main registers in the 6502 are the same as those in the Z80, but some of them are called
by different names.

A is the "accumulator"
where bytes are stored on
their way to and from the
ALU. It is the same as the
accumulator in the Z80 and
can hold only one byte.

X and Y are "index
registers". They are used in
certain instructions to work
out the address of a byte of
data. They can also be used
as general purpose
registers to hold bytes
temporarily.

This is the
ninth bit of
the stack
pointer
(register SI.

P stands for "processor
status register" and it has
the same function as the
flags register in the Z80. It
contains eight bits, seven of
which are used. Each bit is
sella 1 to record a certain
condition, such as whether a
number is positive or

PC is the
"program
counter" and it
works in the
same way as the
PC register in
theZ80.

S is the "stack pointer". It stores the address of the last item on the
stack - the special area in the RAM where the CPU stores data. In the
6502 the stack pointer is an eight-bit register. In order to store
addresses a ninth bit kept permanently at 1 is wired up to the S
register. This represents the page number of the address, so in the
6502, the stack is always in page one of the memory. The number in
the stack pointer gives the position on the page. 15

16

Giving the CPU instructions
A program m machine code consIsts
of a list of instructions telling the CPU
exactly what to do wIth bytes in the
registers. You can use only the
instructions that the CPU
understands, so for computers with a
Z80 or Z80A microprocessor you
must use instructions from the Z80
instruction set and for computers
with a 6502, 6502A or 6510
microprocessor, you must use 6502
instructions. There is a list of Z80 and
6502 instructions at the back of this
book.

These are mnemonics.

Opcodes can be written as mnemonics­
short words which represent what they do­
or as the hex equivalents of the computer's
binary code for each instruction. For
example, LD A on the Z80 and LDA on the
6502 are the mnemonics for "load a byte into
the accumulator". The same opcodes in hex
are 3E for the Z80 and A9 for the 6502.

ZBO

Here are two machine code instructions in
mnemonics, one for the Z80 and one for the
6502. They both tell the computer to load the
number 05 hex into the accumulator (& is the

"You can find out about assemblers on page 40.

Most machine code instructions consist of
two parts: an "opcode" and an "operand".
The opcode tells the CPU what to do and the
operand tells it where to find the data to
work on. (The word operand means "object
on which an operation is performed".) Each
opcode is an instruction from the instruction
set.

These are hex codes.

Mnemonics are much easier to
understand then hex, but you cannot type
them into your computer unless you have an
assembler (a program which translates the
mnemonics into the computer's own
code). * Most people write machine code
programs in mnemonics and then translate
them to hex.

sign to indicate hex numbers). Numbers are
always written in hex in machine code. On
the 6502 a number is preceded by a #
(hash) sign to show that it is a piece of data.

A simple program

Here are two programs, one for the Z80 and one for the 6502, which tell the CPU to add two
numbers. They are both written.in mnemonics. Strictly speaking, a program in mnemonics
is called an assembly language program and one which uses hex codes is called machine
code. Over the page you can find out how to translate the programs to machine code, and
on the next few pages, how to load and run the version for your computer.

The Z80 and 6502 programs follow the same steps, although the actual instructions are
different. * In the 6502, data on which calculations are to be carried out must always be
placed in the accumulator. In the Z80 it is placed in the accumulator, or for big numbers, in
register pair HL.

To add two numbers you load the first
number into the accumulator. Then you add
the second number to the one in the

accumulator and store the result in the
memory. The mnemonic opcodes for these
instructions are given below.

ZBO mnemonics

LD A, number

ADD A, number

Load A with a number. A stands for "accumulator"
and LD is short for "load".

Add to A (the accumulator), a number.

es and
operandsforthe
zaD are sepal·at"d~lf.
bycom

- - -- -- -- 1- --------- ---·---------- ---1
LD (address), A

6502 mnemonics

LDA number

ADCnumber

STA address

ZBOadding
program

Load a certain address with the contents of A (the accumulator).
Addresses are always written in brackets.

Meaning

Load A with a number. A stands for "accumulator" and LD is short for
"load".

! ADC is the mnemonic for the instruction "add with carry". It tells the .
computer to add a number to the accumulator and to set the carry flag m
the flags register if necessary. You can find out more about thlS on page 29.

Store A (i.e. the contents of the accumulator) at a certain address. ST il?
short for "store" and A stands for "accumulator".

Th e # sign indicates
that the operand is a
piece of data.

Now you can fill in the data and addresses.
In these examples the programs are adding
2 hex and 4 hex (which are the same as 2

and 4 decimal), and storing the result in
memory location 7F57 hex.

*From now on, if you have a 280 you can skip over the 6502 programs and if your computer uses 6502
instructions, ignore the 280 programs.

17

Translating a program into hex
The only way to translate the mnemonics into hex codes is to look upeach
mnemonic in a chart, There is a chart of mnemonics and hex codes at the back ofthis
book. You have to be careful, though, as there are several different hex codes for
each instruction depending on whether the operand is a piece of data, an address or
the name of a register, For example, here are some different versions ofthe
opcodes for loading the accumulator, and their hex codes,

Z80 6502

Mnemonics Hex codes I Mnemonics Hex codes

LD A.data 3E.data LDAdata A9data
-- - - i LDA address LD A. (address) I 3A. address AD address

When the operand is a piece of data it is
called "irrunediate addressing", When it is
the address where the data is stored it is
called "absolute addressing", The list of
mnemonics and hex codes at the back of

Z80 adding program

Mnemonics Hex codes

LD A, data 3E, data

ADD A. data C6, data

LD (address), A 32, address

Here are the hex codes for the Z80 and 6502
adding programs, Instructions in
mnemonics are sometimes called source

Now you can fill in the data and addresses,
This is quite straightforward - except for
the addresses, In machine code you have to
reverse the order of the two pairs of digits
which make up an address, You can find out

18 more about this on the opposite page,

this book includes all the instructions
covered in this book If you want to write
more advanced programs you will need to
get a complete list of Z80 or 6502 codes and
there are some suggested books on page 40,

6502 adding program

Mnemonics Hex codes

LOA data A9data

ADC data 69 data

I STAaddress 80 address

code and those in hex are called object
code,

8502 adding program with date

Mnemonics

LOA #&02

ADC #&04

STA &7F57

Hex codes

A902

6904

80 577F

have to reve rse
the two pairs of d igits
in an address, like this.

You leave outthe &
and # signs in the hex
code version.

More about hex codes

Machine code programs are written in hex rather than decimal numbers because the
binary numbers used in the computer's own code translate more neatly to hex than

diff
Cimal

, ~ .~ _ F \ Deci~
~I . Hex

For example, the highest address you can
have with sixteen binary digits is 65535 in
decimal and FFFF in hex and the highest

number that can be represented by one
byte (eight binary digits) is 255 decimal and
FFhex,'

L\)~

i
Mnemonic
opcode

Most of the opcodes in the computer's
instruction set are one byte long, so in hex
each opcode is two digits, Addresses,

High order b1'4C:Y
byte

The first pair of hex digits is called the high
order byte and it is the page number in the
memory on which the address is located
(see page 10). The second pair of digits is
called the low order byte and it is the
position of the memory location on the page

though, take up two bytes so they need two
pairs of hex digits,

(one page = 256 memory locations),
Because of the way the CPU handies
addresses you must always give it the low
order byte (position on page) first, followed
by the high order byte (page number),

Looking at machine code programs
Machine code programs in magazines look very confusing until you work out how they are
presented. Below there are two examples of the way machine code listings are displayed.
(Nei!herofth_programs is complete and will not work on acomputer.)

H d &mpm~~.u
ex ump _-. ... ~..... This is caDeda hexdump. The first foor
(.,-- "port~ulddn."'''''' dlgitII in each line are an address andthe

:sA3O 00 00 00 00 D8 01 CB IF IeIII of the pairs of digits are the hex codes
3A38 CB IF 30 07 :lE 10 D3 00 forinslructiolla,dataandaddresses The
3A4O CF 37 :sF 21 2F 3'P 11 00 first code in ---'"line ' ored' the' :5A48 DO 01 co 03 cs OE Z7 71 -., IS 81 In
3ASO lA FE se 28 28 CD cs :sA addrea at the beginning of the line. The
:: ~ : ~ : ~ ~ ~ ~ IeIIIofthecodes are stored in the locations
3A68 os FE '" CA "" 38 FI 71 following that address.

Assembly languagelllltlng

(Address Hexcodes;, Mnemcmics
0340 A2 00 ~ LD. _
0342 BD 4E 03 LOA 11034£, X
034:5 9D co B3 STA IrB3CO, X
0348 Ea INX
0349 EO 08 CPX 4Ma08
0348 DO F:; BNE ~
034D 00 BRk

This listingincludes hex codes and
mnemonics, The first number in eachline
is the address where the first byte in each
line is stored in the computer's memory.
The next co1umn contains the hex codes
for the program. followed by the
mnemonics.

*You can find out how to convert binary numbers to decimal on page 28.

19

20

Finding free RAM
There are several things to do before you can load and run the addmg program on
page 18. First you need to choose an area in the memory in which to store the .
program. When you type in a BASIC program, the BASIC interpreter automatlcally
stores your program in user RAM. When you give the computer a machine code
program, you bypass the mterpreter so you have to tell the computer where to
store the program.

You need to choose an area in the RAM where your machine code will not
interfere with any other information stored in the memory. For instance, you must
not store machine code in the areas reserved for use by the operating system, such
as the systems variables or the stacks. If you do the system will probably crash as
your machine code will have replaced vltal informatlon whlch the computer needs
to organize all its work. You also have to be careful to keep your machmecode
separate from any BASIC program you may give the computer at the same time. If
the computer crashes the only way to restore itis to switch it off and on again and
you will lose your program.

How much memory will you need?

Each memory
location holds
one byte.

It is quite easy to work out the length of a
machine code program - you just count up
the number of pairs of hex digits (each pair
takes up one byte). For example, the adding
program has seven bytes.

Finding free RAM
The normal place to store machine code
programs is at the top of user RAM, the
place where BASIC programs are
stored. You have to make sure, though,
that the machine code will not get mixed
up with any BASIC programs. To avoid
this you can lower the top of the user
RAM area. This makes a "no-man's land"
above user RAM which the computer
will not use until you tell it to when you
load your machine code program.

The top of user RAM is called
RAMTOP, or H1MEM, or just top of
memory. You can find out how to lower
RAMTOP on the opposite page.

Most machine code programs are quite
short and to start with a hundred bytes of
memory space will probably be plenty for
your machine code programs.

Lowering the top of user RAM

The computer keeps a record of the address of RAMTOP in the systems variables and you
can change RAMTOP by changing the address stored in the systems variables. The
instructions for doing this vary on different computers, but most follow the principles given
below. You should check how to change the top of RAM in your manual though, as your
computer may use different instructions, or may even have an easier way to make space
for machine code. .

Page
number . .

The address of RAMTOP takes up two
consecutive locations in the systems
variables, one for the page number of the
location and one for the position on the
page. Look up the addresses of these
systems variables locations in your manual
(they may be listed as RAMTOP, HIMEM, or

PR INT PEEK<address l)+PEEK
(addr e ss 2)*256

You can use PRINT PEEK (or your
computer's command) like this to peek into
the systems variables and print out the
address ofRAMTOP. Fill in the addresses
of your systems variables.

CLEAR ramtop address - 100

\
Spectrum

HIMEM ramtop address - 100

'- Oric ... ~
Most computers have their own special
command for changing the address of the
top of user RAM. For instance, forthe
Spectrum (Timex 2000) the command is
CLEAR and for the Oric it is HIMEM. These
commands are followed by the address of
the top of user RAM minus the number of
bytes of memory you wish to reserve for

just top of user RAM). The computer stores
the two bytes of the address in reverse
order - first the position on the page, then
the page number, so the first location in the
systems variables holds the position
number and the second, the page.

" ~'2-S\'2-

~'2-S\'2- "" '2>~'2-S~~

This command automatically converts the
two bytes ofthe RAMTOP address into a
decimal address by multiplying the page
number by 256, then adding the position on
the page.

your computer's command in your manual.
These commands lower the top of user

RAM by 100 locations and so reserve an
area of 99 bytes for machine code starting at
the address after RAMTOP. You can
change the figure 100 to reserve more space.

""See over the page for how to lower the top of RAM on the VIe 20, and where to store machine code
on the ZXSI (Tirnex 1000).

,21

,2

VIC20tip
The VIC 20 has no special command for
changing the address stored in the
systems variables. Here are the
instructions for lowering the address of
the top of user RAM on the VIC.

The address is held in systems variables
55 and 56. Remember, the second
location holds the page number.

(POKE 56 , PEEK (56} - 1]
To lower the top of user RAM by 256
locations, i.e. one page, use the direct
command shown above. This makes the
computer peek into location 56 (the one
which holds the page number). It
subtracts I from the value held there and
then pokes the new value back into
location 56. In other words, it reduces the
page number part ofthe address by I. To
see the new address of the top of user
RAM type this command:
PRINT PEEK(55)+ PEEK(56)'256.

Other places to store
machine code
There are a few other places in the
memory where you can store machine
code, if you are not using them. For
instance, if you are not planning on
saving your program, you can store it in
the cassette buffer, or if you are not
creating any user -defined graphics, you
could store it in the area set aside for this.
Look in your manual to find the
addresses of these areas in the RAM.

Your manual may also suggest suitable
places in your computer's memory for
storing machine code. You should look
out, too, for tips in magazines and books.

zxa1 tip
On the ZX81 the best place to store
machine code programs is at the
beginning of user RAM. To do this you
type a REM statement as the first line of
the hex loader program given on page
24 and fill it with as many digits as there
are bytes in your machine code
program.

5 REM 12345 67

--Seven bytes

Each of the digits in the REM statement
takes up one location in the memory.
Now you can poke your bytes of
machine code into the locations
reserved by the digits in the REM.:-. .._--..;- ,
statement. Th e first byte

of machine
code will be
sto red in
location 16514.

User RAM
starts at
location
16509.

To do this you need to know the address
where the first digit is stored. User RAM
starts at location 16509 and the computer
needs two bytes to hold the REM line
'number, one for REM, one for NEWLINE
and one to record the length of the line,
so the first digit is in location 16514.

Userdefined
graphics area.

Cassette
buffer

Loading and running a program
The next few pages show you how to load and run the adding program on page 18.
To give the computer a machine code program you have to poke each byte into the
area of memory that you have chosen for storing machme code (e. g. above
RAMTOP). On most computers you can only poke decunal numbers so you use a
short BASIC program called a "hex loader" to do this for you. The hex loader
converts each byte of ma'chine code to a decImal number, the n pokes it into the
memory. There is a hex loader program over the page. First, though, you need to
change the address for the answer to the adding program, to an address suitable
fo r your computer. There is also one more instruction (see below) you must add to
the program.

Choosing an address for the answer
Data produced by a machine code
program, such as the answer to the sum in
the adding program, is called "data bytes".
It is important to store data bytes where

For example, if you have lowered the top of
user RAM to, say, location 16000, the first
address of the area for machine code will
be location 16001. This is where you would

16001 266 62ntmainderl29

To convert the address to hex you divide by
256. The answer is the decimal page
number and the remainder is the position
on the page (see page 11).

The return instruction

Z80 mnemonics
LD A,&02
ADD A,&04
LO (&7F57),

Hexcodes
3E,02
C6,04
32,577F

At the end of every machine code program
you must always have the instruction RET
(for the Z80) or RTS (for the 6502). This
makes the computer stop running the
machine code program and return to where

they will not get mixed up with the program
itself. The best place is right althe
beginning of the area you have reserved for
machine code, in front of the program.

store the data byte and the program would
start in location 16002. You will need to
convert the address for the data byte to hex
so you can insert it in the program.

62 T 16-
3183_ 1418Emhex.

129 16 - 8 remainder
8188_ 1181 m hex.

Address
16001 is
3E81 in hex.

To convert these to hex you divide by 16
and then convert the answers and
remainders to hex digits as shown above.

6502 Mnemonics
LDA # &02
ADC # &04
STA&7F57

Hex codes
A902
6904

...:_,80 577F

it left off. Without this command, the
computer would carry on attempting to
follow an instruction for every byte it found
in the memqry and the system would soon
crash. *

' There is more about the return instruction on page 35.

23

Hex loader program

Here is the program for loading machine code into the computer', memory. To use this
!older you put the hex codes of your machine code program in line 160, followed by the
word END, 88 a sitJnal to tell the computer there is no more data. At line 40, the computer
I8IIds a pair of hex digits, converts them to a decimal number in linea 70 to 110 and then
poba that number into the memory in line 130.·

10 PRINT "ADDRESS _RE I1ACHlNE

CODE IS TO BE STORED"" Al8 tbaaddrel8ofthellratlocationwhere
20 I NPUT A _____________ youwiahIOlllOreyourpragram.
30 LET Cooo _____________ CisaCOll11ler.

40 READ HS ------------Pulallratpalrofhelldigilainline 160inloHS.

:50 I F _"END " THEN GOTO 180 T8118HSforWOldEND,theaigJ1al IO
indIca18 eftdof data.

60 IF LENCH.>02 THEN BOTO 170~

10 LET x- CASe CHS > - 4e > *16 l-= CbeclalIo make II\re HSoomaills twoc:llgila, IJId If IlOl, goes 10 line 170.
eo IF ASCCH. > :S7 THEN LET x- c:oa-t. llrat hexdigilloadec:imalnumber
CASCCH.>-:S:S).1 6 lJIdatoreamll

90 LET V-ABC(RIBHT. CHS. ll) }-ecmvertaaeccmdhexdlgilloadec:imal
lOO IF V :se THEN LET X-X+V-4B number, Y,IJId edda loll

1 10 IF V :S1 THEN LET X-X+V-!i5 Cbeclalforbad~bymaki11g11\re

120 I F X 0 OR X 2:s:s THEN GOTO 170 dec:imalnumberinXillbelw_,OIJld2SS.
130 POl(£ A+C. X ____________ Flnttlme,C- O,..,pobsXinIomemory

ka1ioIIA.
140 LET C-C+I-------- ----AddaOMIoC,..,pobsdec:imalvaIueof
1:50 GOTO 40 __________ -, I1U1hexoodeinlomemoryIocationA+ l .

'--lIackloreadnuthexoode.
llilS RE" S AHPLE DATA ONL V _______ Plllyourhexoodeehere,foIlowedbyaigJ1al
160 DATA EF . F. , E2 . A9. END WOIdEND.
110 PRI NT "BAD DATA" --------- Prinlatilislfllflndabad~inliDes60or

leo STOP
lao, lhenllOp"

How the loader works

Hex o 2 3 4 5 6 7 8 9 A B c D E F

ASC If
:5: SI -49
E = 69 - 55

Decimal
= .3 x 16=48
- /4

At line 90 it \IIJ8S

At line 70, the computer converts the fiIBt convert the right-hand digit to an ASCD
digitin!lltoiIBASCDcode118ingtheBASlC codeandstol88itinY. lnlines lOOand 1I0it
word ASC. It then converts the ASCD code changes Y to a dec:imal number by
to a dec:imal value by subtracting 48, or for subtracting 48 or 88 88 before, and adds it to
codes over 57, by subtracting 88,88 shown X. (This time it does not multiply by 16 as it is
in the c:hIrt above. Tban it multiples by 16 the digit which repreeents le in the hex
bee ••• the fiIBt hex cligltrepr.ents the number.) The value ItoredInX is the

34 number of lea and puts the answer in X. dec:imal equivalent of the pair ofhexdigitB.
·F .. tbaBpwa_('l'Inwz IOOO)cbangelhe ASC ccmmand 10 CODE &lldpateechJllll'ol_~1II
~.See~48"'lIbInIk>II8fortbaZX81('l'1nwKlOOO)adJllul_O_s.

Using the loader

Now you can use the hex loader to try out the machine code adding program. This is not a
very exciting program, but it is simple and it shows you how machine code works. Type the
hex loader into your computer. At line 160, replace the sample data with the hex codes for
the adding program, as shown below.

Data for the hex loader

Replace Ib and hb with the two
bytes of the address forthe
answer.

END signal
to computer.

zao 160 DATA 3E.02,C6,04,32, l b ,hb.C9,END

6502 160 DATA A9. 02 .69, 0 4.8D.l b ,hb. 60 ,ENO

These are the hex codes for the adding
program. You need to replace the letters lb
(low order byte) and hb (high order byte),
with the two bytes of the address where the

Running the hex loader

Now type RUN to run the hex loader
program. When it asks you for the address,
type in the first location after the one where

answer will be stored in your computer.
Remember to put the bytes in reverse
order, i.e. low order byte (position on page)
followed by high order byte (page number).

you are storing the answer. Type this
address as a decimal number as it will be
used with the POKE command.

Running the machine code program

These are some ofthe
commands used on
different eml1n" "pr.

The command to tell the computer to start
running a machine code program varies on
different computers. Some use CALL,
others use PRINT USR or SYS with the
decimal address of the location where the

r---~~rnroummn~~

first byte of the program is stored. Check
this command in your manual. When the
computer receives this command it goes to
the address and starts carrying out the
machine code instructions. 25

Seeing the result

[PRINT PEEK<16001l] [:RINT P EEK (16001l J
The computer carries out the machine code have to use PRINT PEEK with the address of
instructions and stores the answer in the the answer. The result will be the answer in
location you told illo. To see the result you decimal.

Programs to w rite
You now know enough machine code to write some simple programs. There is a
checklist at the bottom ofthe page to help you remember all the things you have todo
when you write a machine code program. Answers page 44.
1. Try writing a program to add 25 and 73 ~ ;...-::..:.::..;/"-----.---~-------~
(decimal) and store the result in the ~

, The adding program wi ll only add (
memory. ~~~ numberswhi chtotallessthan255.
2. See if you can write a program to add 'T On page 28 yo u can find out howto
64 and 12 and 14 (decimal) and store the fs!)! , { add la rger numbers.
result in the memory. . \

Machine code checklist
1. Write your program in assembly
language and convert any data to hex.
2. Look up the hex code for each of the
mnemonics (there is a list of the
mnemonics and hex codes at the back of
the book).

Do n'tforgetto put END afte r you r
list of hex codes in the hex loader.

3. Add the return instruction to the end of
the program. (See page 23.)

4. Count up the number of bytes and
reserve your free RAM area. (See pages
20-22.)

Make a note of the addresses of
data bytes and of the address
where you have stored the
program.

5. Work out what memory locations you
need for data bytes and convert the

26 addresses to hex. (See page 23.)

6. Fill in the addresses in the program­
remember to put the two bytes in reverse
order. (See pages 18-19.)

Before running the hex loader,
check the hex codes in the data line
very carefully.

7. Type in the hex loader (you could save
this program on tape) and fill in the hex
codes in line 160 followed by the END
signal. (See page 24.)

If vour programs won't run, check
that vou have used the correct hex
codes.

8. Run the hex loader and input the
decimal address of the firstlocation
where you wish to store the machine
code. (See page 25.)
9. Run the machine code program using
your computer's command with the
address (in decimal) of the first location
where the machine code is stored. (See
page 25.)

If you change the data in the hex
loader you have to run the
prog ra m aga in to poke the new
bytes into th e memory. ,---~.Q~~:....

.

Adding bytes from memory
In the previous program the data was included in the program itself. This is called
immediate addressing. Sometimes, though, you may want to tell the computer to
do something with data stored in its memory. In this case, the operand part of an
instruction will be an address telling the computer where to find the data. This is
called absolute (or direct, or extended) addressing.

Immediate
addressing

These are just two of the several different
ways in which you can tell the computer
where to find the data to work on. The
different ways are called "addressing

Absolute
add ressing

modes". There is a different hex code for
each instruction depending on the
addressing mode you are using.

Program to add numbers from the memory
Here is a program to add two numbers stored in the memory. Compare the hex codes for
the instructions in this program, which uses absolute addressing, with those for the
previous adding program which used immediate addressing.

Z80program

Mnemonics Hex codes

LD A, (address 11 3A, add ress 1
LD B.A 47
LD A, (address 21 3A, add ress 2
ADD A,S 80
LD (address 31, A 32, address 3
RET C9

To add two numbers from memory you
have to load them into the registers first. For
this you can use the accumulator (A) and
register B. You cannot load register B

6502 program

Mnemonics Hex codes

LDA add ress 1 AD address 1
ADC address 2 6D address 2
STA address 3 8Daddress 3
RTS 60

Running the program

Meaning

Put the number in address 1 into the accumulator.

Put the number in the accumulator into registerB.

Put the number in address 2 into the accumulator.
Add the number in register B to the accumulator.

Store the contents of the accumulator in address 3.
Return

straight from the memory, though, so you
have to put the first number into A and then
transfer ilia B.

Meaning

Put the number in address 1 into the accumula~
Add the number in address 2 to the accumulator.
Store the contents of the accumulator in address 3.
Return.

To run this program, follow the steps given in the checklist on the opposite page. First,
though, you will need to poke into the memory the two numbers to be added. You should
choose memory locations at the beginning of the area you have cleared for machine code, to
keep these data bytes separate from the instructions. Then convert the addresses to hex and
insert them in the program. You need a third address for the answer. To see the result, type
PRINT PEEK(address 3). 27

28

Working with big numbers
The programs on the previous few pages only work with numbers which add up to
255 or less. This is the hIghest number that you can represent with the eight bitsin
one register or memory location. To work with larger numbers you need to know a
little more about the binary number system, and how to use the carry flag Overthe
page there is a machine code program to add larger numbers.

Binary numbers
The binary nwnber system works like hex and decimal nwnbers except that there are only
two digits, 0 and 1. To make nwnbers biggerthan I you use several digits and the value of
each digit depends on its position in the nwnber.

111 1 1 1

x 12 8 x 64 x3 2 x 16 x 8 x 4

128 + 64 + 32 + 16 + 8 + 4

In a binary nwnber, each digit has twice
the value of the digit on its right. The first
digit (the one on the right) shows how
many ones there are in the nwnber. The
second digit shows the nwnber of twos;

1 1

x 2 x 1

+ 2 + 1 = 255 L-~'""'"-

the third, the nwnber offours; the fourth the
nwnber of eights and so on, as shown above.
To convert a binary nwnber to decimal you
multiply each digit by the value of its position
in the nwnber and add up the answers.

1 0 0 1 o 1 1 1 0 10000111 1 Can you convert these to
decimal? (Answer page
44.)

x 128 x 64 x32 x 16 xB x 4 x 2 x l x l 28 x 64 x 32 x 16 x 8 x4 x2 x l

o + 0 + 32 + 0 + 8 + 4 + 2 + 0 128 + 0 + 0 + 0 + 0 + 4 + 2 + 1

~ 46 ~ 135

Here are some more examples which show how you
convert binary nwnbers to decimal.

Giving the computer big numbers

00011010

111 1 101 1

10101010

Inside the computer, nwnbers over 2SS are stored in two bytes, called the "high order byte"
and the "Iow order byte", just like addresses. The high order byte shows how many 256s
there are in the nwnber and the low order byte is the remainder. As with addresses, the
computer always deals with the low order byte before the high order byte and you have to
store them in that order in the memory.

~ Nurnberover255

12420 -;. 256 = 48 remainder 132

High order byte

I '1'8 V Low order b; GRJ
To give the computer a nwnber over 255
you have to work out the value for each
byte. To do this you divide the nwnber by
256. The answer is the decimal value of the
high order byte. The remainder is the low
order byte.

If you want to use the nwnber as data in a
machine code program you have to convert
each byte to hex. To do this, divide each
byte by 16, then convert the answers and
remainders to hex digits as described on
page 11.

r---------------{ What are the decimal high order and
L-:::.30:::.7,-:-: ...:2:.,:1,,2:.,:1.::4,,-: _7,--5",9"",--' --,1",0",2",3,,-. ----1 low 0 rd er bytes fo r th ese nu m be rs 7

And what are they in hex? (Answers
on page44.)

1
I
I

The carry flag
The carry flag is a single bit in the flags
register (also called the processor
status register), which is used to
indicate when the answer to a sum is
greater than 255 and will not fit into one
byte (eight bits). Whenever this
happens the computer automatically
puts a I in the carry flag This is called
setting the carry flag and making it 0 IS
called clearing it.

¥oucan think of the carry flag as a ninth bit
indicating that a binary I has been carried
over from column eight of a nwnber. For
example, look at the sum 164 + 240
(l0 100 100+ 11110000 in binary), below.

r---~--~-.=-~~~----,
Decimal CARP:t Binary

164
+240

128 64 32 16 8 4 2 1
o 00 1 00
1 10000 Ninth 11

bit +

To add binary numbers you carry 1
each time a column totals more than
1 just as you do in decimal addition
when a column totals more than 9.

404 '1-1------------ ~_ ". ~, I
~ 0 0 101 00' ~~~~~~

The answer to this sum is 404 which takes
up nine bits in binary. The ninth bit shows
how many 256s there are in the nwnber.ln

Carrying in the Z80
The Z80 has two different adding
instructions: ADD and ADC. ADD tells the
computer to add two nwnbers but to ignore
any carry over from previous calculations.
If the calculation results in a carry over, the
computer will set the carry flag and if there
is no carry it will make the carry flag O.

CARRY

the computer it would be represented by
the bit in the carry flag.

ADC

ADC stands for "add with carry" and it
tells the computer to add two nwnbers plus
the carry flag, and to set or clear the carry
flag depending on the result. If you are
doing a series of calculations it is best to use
the ADD instruction for the first sum to make
sure you do not include a carry left over
from a previous operation, and then to use
ADC in case there was a carry from the first
calculation.

You can see how the
} ~:1:!;:;s carry flag works in
'/') the program over

The 6502 has only one adding instruction,
ADC, so it always includes the contents of
the carry flag in calculations. Because of this

the page.

it is important to clear the carry flag using
the instruction CLC (clear carry flag) before
you do any additions. 29

Big number programs
Before you can run the programs on these two pages you need to work out the high
and low byte for each of the numbers you want to add and poke them into the
memory. For example, say you want to add 307 and 764.

High
First number: 307

307 + 256 = 1 remainder 51
order
byte-,-_.J

Second number: 764

764 + 256 = 2 remainder 252

Low order

w

Next you need to poke these bytes into
memory locations at the beginning of the
area you have reserved for machine code.
For each number, the low order byte must
be in the first location, followed by the high
order byte. In the p icture above, the two

Z80 big number program

bytes for the Iirst number are stored in
locations Wand W I and the bytes for the
second number are in locations X and X 1.
You need three locations, Y, YI andZ for the
answer (one for the low order byte, one for
the high order byte and one for a possible
carry).

Adding the two numbers on the Z80 is quite easy as you can use the registers in pairs, with
each pair holding the two bytes for one number. You can use the Hand L registers as one
pair and the B and C registers as another. When they are used like this they are referred to
as HL and BC. When you are not using the accumulator you use the HL registers for adding.
Here are the mnemonics and hex codes for the program. It may help you to look atthe
picture at the top of the page when you study this program.

Mnemonics Hexcodes Meaning

LO HL,(addressWI 2A, address W Puts byte from address W (low order byte of
fust number) into register L and byte from
address WI (high order byte, first number) into
iegisterH.

LO BC, (address XI ED 4B, address X Puts byte from address X (low order byte,

~ This opcode is
second number) into register C and byte from
address XI (high order byte, second number)

two bytes long. into register B.

ADD HL,BC 09 Adds contents orRL and BC and leaves result in
HL. It does not add in the carry flag but it does set
the carry flag if necessary.

LO (address VI, HL 22, address V Stores low order byte of answer in address
Y and high order byte in address Y l.

LO A,&O 3E,0 See opposite page for how the (See oppos ite for
ADC A,&O CE,O computer checks the carry flag. how to disp lay
LD (addressZI,A 32 addressZ the resu lt of
RET C9 Return. this program.

To run the program you need to !ill in the specify one address for each pair. The
hex addresses for W, X, Y and Z. (Don't computer automatically puts the byte fromr~ • ~
forget to reverse the pairs of digits.) When the next consecutive address into the other ~

30 you use the registers ill parrs you need only register ill the parr.

Checking the carry flag

Addwith
carry, O. -

Lines 5-7 of the Z80 program are for
checking the carry flag. You cannot load the
contents of the carry flag straightinto a
register, or into the memory. The only way
to see if it has been set is to do another
addition. To do this you put 0 into the

6502 big number program

accumulator (5th line), then add 0, using the
add with carry instruction. If the carry flag
was set by the previous calculation the
accumulator will now contain I (from the
carry flag) and this is stored in address Z
(7th line).

Here is the program for adding numbers greater than 255 on the 6502. Before you run it you
need to work out the high order and low order bytes for the two numbers and poke them
into the memory as described on the opposite page.

Mnemonics
CLC
LOA address W

STA address V
LOA address W1
ADC address X 1
STA address V1
LOA #&0
ADC # &0
STA address Z
RTS

Hex codes
18
AD addressW
60 dr s X
80 address V
AD address W1
60 addressX1
80 address Y1
A900
69 00
80 addressZ

The hex codes for the ADC
instruction in the 6th and 9th
lines are different because in
the 6th line the operand is an
address and in the 9th line
it is data.

First the program
clears the carry flag
in case it was set by

Then it puts the low order byte of the Iirst
number into the accumulator and adds
with carry the low order byte ofthe

If the result is greater
than 255 it sets the
carry flag.

a previous operation. second number (2nd and 3rd lines).

1 [J) ~~JJ l l lf (~1 1 ~ ~
It stores the result in location Y (4th line). Then it adds the two
high order bytes and the carry (if there was one) from the
previous sum. It stores the result in location YI (7th line).

Lines 8-10 check to
see if the carry flag
was set using the same
method as shown at
the top of the page. Seeing the result

The result is stored as three bytes. The low
order byte (location Y) shows the number of
units. The high order byte (location Y I)
shows the number of 256s. This time the carry
(location Z) shows the number of 65536s. To
see the result use the instruction shown on the
right. (Replace Y, YI and Z with your
computer's addresses.)

PRINT PEEK (Y) +«PEEK(Yl)
256)+(PEEK<Z) 6»

See if you can adaptthe program
on page 27 so that it can cope w ith
results greater than 255. Hint: you
need to add lines to check the carry
fla . (Answer page 44.

Displaying a message on the screen
The next program shows you how to use machine code to display a message on the
screen, The program for the 280 is on the opposite page and the one for the 6502 IS on
page 34, The two programs follow the same basIc principles, although the method is
slightly different for the different microprocessors, *

Howthe program works
-'--'MO-::-e-ss-a-ge- l

t~~"f f? _::J! I
First you poke the character code for each
letter of your message into locations at the
beginning of your free RAM area, Each
letter takes up one byte, At the end

The program loads each byte
of the message into the accumulator
and compares it with 255, If the byte of
message does not equal 255, it stores it in
the screen memory and it is automatically

[Ej - ,,-,-

~~~~~ __ , __ ,==:lL---I 
of the message you poke in the code 255 as a 
signal to tell the computer thIS is the end of 
the message, 

displayed on the screen, Then the 
computer jumps back to the heginning of 
the program to find the next byte of the 
message in the memory, 

~~mm~ G Zero flag ~ 0 

Comparing things 

'~ODn,,,,~-
Zero flag ~ I 

You use the opcode CP on the Z80 and CMP result is 0, the two bytes are equal and it sets 
on the 6502 to tell the computer to compare the zero flag in the flags register to I. If they 
a byte with the one in the accumulator, The are not equal the zero flag is 0, You can then 
computer compares them by subtracting tell the computerto go to another part of the 
one from the other. (This is just a test, in fact, program, or carry on with the next instruction 

, the two bytes remain unchanged,) If the depending on whether the zero flag is I or 0, 
*On the Spectrum (Timex 2000) you will not get a legible message on the screen because of the way the 
screen memory is organized. 

Z80 message program 

Here are the mnemonics and hex codes for the Z80, Before you run the program, poke your 
message into free RAM, Then fill in the addresses in lines I and 2 of the program, Thelast 
instruction of the program tells the computer to jump back to the third instruction, 
You need to insert the address where the third instruction will be stored in your computer, 
into the last line of the program, 

Mnemonics 

LD lU;, screen address 
LD DE, message aaaress 
LD A, (DE) 
CP,&FF 
RETZ 
LD (HL),A 
INC, DE 
INC, HL 
JP, address of 3rd 
instruction 

Hex codes 

21, screen address 
11, message address 
lA 
FE FF 
CB 
77 
13 
23 

\ C3, address of 3rd 
mstructlon 

~i!:<:'.;;=~ This is immediate 

] 
addressing - the operand is 

"1j!:t.:~l,~N\ the data to be loaded into 
the registers. 

In indirect addressing the 
operand is written in 
brackets. 

In this program, register pairs HL and DE are used as pointers to the addresses where the 
computer should store or fetch data, This is called "indirect addressing", The instructions in 
the third and sixth lines use indirect addressing, 

In the first two lines, the computer puts the screen address (the address where data isto 
be stored) into register pair HL and the message address (the address from which data is 
fetched), into register pair DE, 

LD A, (DE) tells the computer to read the 
address in DE and then fetch the byte from 
that address and put it in the accumulator. 
This is indirect addressing, Then it 
compares the byte in the accumulator with 

LD (HL),A also uses indirect addressing, It 
tells the computer to read the address in HL 
and then store the contents ofthe 
accumulator (the message byte) at the 
location with that address, INC is the 
mnemonic for "increment" and means 

&FF (the hex for 255), RET Z tells the 
computer to return to BASIC if the zero flag 
is I (i,e, if the byte equals 255), If the zero 
flag is 0, it carries on with the next 
instruction. 

increase by one, In the seventh and eighth 
lines the computer adds one to the 
addresses held in DE and HL so that when it 
jumps back to the instruction in the third 
line, it fetches the message byte from the 
next memory location, 33 



/ 
( 

6502 message program 

Here are the mnemonics and hex codes for the 6502. Before you run the program you need 
to poke the character codes for your message into free RAM, followed by 255, the signal for 
the end of the message. Then put the address, in hex, of the first location where the 
message is stored, in the second line of the program. Put an address in yourcomputer's 
screen memory in the fifth line. 

You also need to fill in the seventh line with the address where the second instruction in 
the program will be stored in your computer. This mak~s the computer jump back to 
repeat the program. 

fi:2 Inthefourth lineof 
Mnemonics Hex codes the hex codes the 
LDX#&OO A200 figu re 07 tells the 
LDA messaqe address, X ",B D message address ~~ computer how 

CMP#&FF C9FF many locations to 

BEQ to RTS instruction F007 1.1) ~ .~ ( iumptoreachthe 
ST A screen address X 90 screen address RTS instruction. 

~ /' INX Ea 
J M P address of 2nd instruction ~4C address of 2nd instruction 
RTS "60 

This program uses another addressing 
mode, called "indexed addressing". In 
indexed addressing, the contents of the X or 

lo~m 
In the first line, the computer puts 0 into the 
X register. The second instruction uses 
indexed addressing so the computer adds 
the contents of the X register to the address 

CMP#&FF 
72.. 

~o 
.II"-11~ 

o 
CMP in the third line makes the computer 
compare the byte in the accumulator with 
&FF (hex for 255), the signal for the end of 
the message. If they are equal it sets the 
zero flag to I. The next instruction,BEQ, 
stands for "branch if equal" (i.e. if the zero 

SCREE:N MEMORY 

Next, in the fifth line, the program uses 
indexed addressing to store the byte in the 
accumulator (the message byte) at the 
address given in the instruction plus X. 

INX stands for "increment X" and it 
makes the computer add I to the contents of 

Y registers are added to the operand to give 
the address where the data is stored. The 
second and fifth lines use indexed addressing. 

in the instruction. The result gives it 
the address of the data to be loaded into the 
accumulator (a byte of message). 

Seven bytes 

c=:n=cn 
flag is I). In the hex codes it is followedbya 
number telling the computer how many 
locations to jump. We wantthe computer to 
branch to RTS if the message byte equals 
255 and there are seven bytes between the 
branch instruction and RTS. 

the X register. Then it jumps back to the 
second instruction. This time X is I, so it 
loads the next byte of the message into the 
accumulator and stores it at the next screen 
location. 

Jumping and branching 
Making the computer go to an mstruction in another part of the program is called 
branching. There are three different ways of branching: Jumps, subroutines and 
conditional branches. In a conditional branch the computer carries out a test and 
then branches, or goes on with the next mstructJon, dependmg on the result ofthe 
test. You can find out more about, conditional branches over the page. Jumps just tell 
the computer to go to a certain address. 

The program counter 
The program counter is a speciall6-bit register which holds the address of the next 
instruction the computer is to carry out. The computer reads the number in the program 
counter and then goes to the location with that address to fetch its next instruction. Then the 
program counter is increased by one so it points to the next memory location. 

When you tell the computer to jump or 
branch to a certain address, that address is 
put in the program counter and the 
computer then carries out the instructions in 

Subroutines 

Jump 

sequence from that address. The opcodes 
for a jump on the zeo and 6502 are shown in 
the picture above. 

The instruction "CALL address" on the zeo and "JSR address" (jump to subroutine) on the 
6502, tell the computer to go to a subroutine. This is just like in BASIC and at the end of the 
subroutine you need the return instruction (RET on the zeo and RTS on the 6502). 

When you tell the computer to go to a 
subroutine, the address of the subroutine is 
put in the program counter. The contents of 
the program counter (the address ofthe 

When the computer reaches the RTS or RET 
instruction at the end of the subroutine, it 
retrieves, or "pops", the last item off the 
stack and puts it in the program counter. 

instruction after CALL or JSR) are stored or 
"pushed" on the stack. The stack is a special 
part of RAM set aside for the computer's use 
(see page 10). 

This is the address of the instruction after 
the one which sent it to the subroutine. This 
is also what happens when you tell the 
computer to run a machine code program. 35 



Conditional branches 

In a conditional branch the computer tests one of the bits in the flags register and then, 
depending on the result, either branches or carries on with the next instruction. Here are the . 
bits in the flag register which you can test in conditionalbranches. 

III NorS l& \::=!" &l r;;o Y ) c Q 
~ ~ r7I 

0 ~ L 1,11 ( ~ I)" 

?r 
).-

7t ~ 
Z This is the zero 
flag and it is set to 1 
if two pieces of data 
are equal. 

V :..& il,,;l ~ IQ ~I " I IbO . 

N or S This is the sign V or P IV This is called the overflow bit on the 6502. C This is the carry 
bit. It is referred to as N On the Z80 it has two functions and is called the flag. It is set to 1 
on the 6502 and S on the parity/overflow. As an overflow bit it is set to 1 when whentheans werto 
Z80. It is set to 1 when the result of a calculation in two's complement a sum will not fit in 
the result of a notation (see opposite) results in a carry over to the one byte. 
calculation is negative sign bit. 
and 0 for positive As a parity bit it is set to 1 if there is an odd nwnber 

. results. of ones in a byte and is used for checking purposes . 

Various instructions in addition to the 
compare instruction cause these flags to be 
automatically set or cleared. For example, 

Conditional branch opcodes 

on the 6502 the Instruction DEC 
(decrement) affects the sign and zero 
flags .• 

Here are the conditional branch instructions for testing each bit. 
Z80 6502 
Jump if •.. Branchif .•. 

JP C ................ there is a carry (C = 1). BCS ................ there is a carry (C = 1). 
JP NC .... .. ....... nocarry(C = 0) BCC ................ no carry (C = 0) 
JPZ ................ equal(Z = 1) BEQ ................ equal(Z = 1) 
JP NZ .............. notequal(Z = 0) B NE ................ not equal (Z = 0) 
JP M ............... minus(S = 1) BMI. .............. .. minus (N = 1) 
JP P ................ plus(S = 0) BPL. ................ plus (N = 0) 
JPPO .............. parityodd(PN= 1) BVS ................ overflow set (V = 1) 
JP PE ............ .. parity even (PN = 0) BVC ................ overflow clear (V = 0) 

~o :;:, ~JB-,o ( 

tQ&ojPo 

zao 
r- JP C address JRNC&05 ~ 

l'- j ~~ 
Jump Slocations if I:;\~ BCS &05 

~ 

~ 

there is nocany. ID 
zao ~ ~ 6502 6502 

~ 
Jump to a certain 

Branch 5 locations if Branch 5 locations if r address if there is a 
~ carry. le there is a carry. equal. 

~ 

After the "JP test" instruction on the Z80 you 
give the computer the address of the 
instruction you want it to jump to. On the 
6502 you give the computer a number which 
tells it how many locations it has to jump 
forwards or backwards to find the 
.instruction. This is called "relative 

.~ ~ 
addressing" and the number is called the 
"displacement", or "offset". 

The zao has an additional conditional 
branch instruction, "JR test" , which you use 
with a displacement rather than an address. 
JR stands for "jump relative" and you can only 
test the zero flag and the carry flag withJR. 

,.. A complete list of your microprocessor's instruction set will tell you which instructions affect which 
flags. 

Remember to count 
Working out the displacement two bytes for an address. 

. When you give the computer a displacement number in a conditional branch, the 
computer works outthe address 6fthe instruction it is to jump to by adding or subtracting 
the displacement from the program counter. To work outthe displacement, count the 
number of bytes up to and including the instruction you want to jump 10. Start atthe 
instruction after the conditional branch and count that as 0 (because the program counter 
will already point to that instruction). For example, here are two short 6502 programs 1\1,-11\ 
which show how you work out the displacement. (The method is the same for the Z80.) 

LDAaddress 
CMP #&FF 

(
BNEtoRTS 
STAaddress 
RTS 

To make the computer jump to the RTS 
instruction in the example above, the 
displacement is 3. 

STA tb hb RTS 

In the example below, the displacement 
to make the computer jump back to the 
ADC instruction is - 6 

LDA #&OO 
ADC#&01 

( CMP#&FF . 
BNE to ADC Countlhis 
RTS _ mstructIon 

~F~ 
-...ui 

~ asO. LDA 00 ADC 01 CMP FF BNE RTS 

Forwards and backwards jumps 
For forwards jumps you just translate the displacement into a hex number and insert it in the 
program. For backwards jumps, though, the displacement is a negative number and there is 
no way of indicating negative numbers in eight bit binary. Instead, you use a different system 
of notation called "two's complement" . In two's complement, the left-hand bit is used as a 
sign bit. If this bit is 1 the number is negative. If it is 0 it is a positive number. 

Two's comDh~mlerlt 
1. To work outthe two's complement of a 
number, say 6 (the displacement for the 
program above), first write down the 
number in binary. 

1285 645 325 165 8s 45 25 15 
6=00000110 

1 1 0 0 
2. Then you change all the Os to I and the Is 
to O. This is called "flipping the bits" or 
IIcomplementing" a number. The result is 
called the "one's 

111111 

1 and 1 make 
Ocarry1. 

complement". 
3. Next add I. The 
result is the two's 
complement of the 
number. 

This is the two's 
complement of 6. 

4. Now you need to convert this to hex to 
insert it in the program. The easiest way to 
do this is to divide the number down the 
middle and work out the decimal and then 
the hex value of 

111010 

8s 45 25 15 
1 1 1 1 
= decimal 15 
= hexF 

8s 45 25 15 

l ' 0 1 0 
= decimal 10 
=hexA 

So the hex representation of the two's backwards displacement you can have. 
complement of 6 is FA and for a backwards The biggest forwards displacement is 127, 
jump you insert this number in the program. the highest number you can make with the 
In two's complement, the highest number eighth binary digit set to 0 to indicate a 
you can represent is 128. This is the bigge:..st:r-~p-=.O::.Si:::ti:::v-=.e-=.n:::umb_~.e_r_. _________ , 

---=----~...:: Can you wo rk out th e hex forthe two's 
~ complement of12, 18 and 97 IAnswer page48) 

37 



Screen flash program 
On these two pages there is a program which swaps two blocks of display on the 
screen to make a flashing effect. It shows how simple animation works. The 
program for the Z80 is given below and the one for the 6502 is on the opposite page. 
At the end there are guidelines for runnmg the program for both micro processors. 

zao screen flash 
Put very simply, the program swaps the two blocks of the diplay by loading a byte from 
each block into the registers, then storing the byte from block b in the screen address for 
block a and vice versa. 

ADDRESS b 

ADORESS a. 

The program uses indirect addressing. The 
screen addresses for the first byte of each 
block are stored in registers HL and DE. 
The computer reads the addresses in these 
registers each time it loads or stores the 
bytes. After swapping two bytes the 
instruction INC (mnemonic for increment) 
makes it add one to HL and DE so that when 

******************************** 
**********************.********* 

00000000000000000000000000000000 
00000000000000000000000000000000 

the program repeats, these are the 
addresses of the next two bytes in each 
block on the screen. 

Block a 

Blockb 

Register B holds the number of bytes to 
be swapped. Each time the program 
repeats, B is decremented (decreased) by I 
so it acts as a counter. WhenB = O all the 
bytes have been swapped. 

zao program jg n = number of bytes in one block; a = first address of block a; b = first address of block b. 
~ 

Mnemonics Hex codes Meaning (HL holds address 
LOB,n 06,n Counter. for block a and \-

LO HL, (address a) 21 , address a Put address of block a in HL. ) DE ho lds address 

LO DE, (addressbl 11 , address b Put address of block b in DE. 
for block b. "I--

LDC,(HL) 4E Load C with contents of address in HL (indirect addressing). 
LO A,(OE) lA Load A with contents of address in DE (indirect addressing). 
LD(HL).A 77 Store contents of accumulator at address in HL (indirect). 
LOA,C 79 Put C (first byte block a) into accumulator. 
LO(OE).A 12 Store contents of accumulator at address in DE. 
INCHL 23 Add one to HL and DE. 
INCOE 13 
OECB 05 DecrementB, the counter. 

LOA,&OO 3E.00 Put 0 in the accumulator 
CPB B8 Compare B with contents of the accumulator (0). 

If B does not equal zero, jump back &F310cations to load 
JR NZ to 4th instruction 20,F3 next bytes into registers. F3 is hex for two's complement 

ofl3 (see page 31). 
RET C9 Return. 

Filling in the data and addresses 

n (number of characters in 
one block) To find n, multipl 
the number of characters in 
a line by the number of lines 
in one block. Convert to hex. 

addresses a and b If you want to swap the top two 
lines of the screen with the next two lines, make 
address a the first address of your computer's screen 
memory. Address b is the address for block a plus the 
number of bytes to be swapped. Convert both 
addresses to hex. 

~ 
~ 

"-

6502 screen flash 

This program swaps the two blocks, byte by byte (i.e. character by character), starting 
with the last byte in e~ch block. It loads these bytes into the registers, then stores the byte 
from block a in the screen location for block b and vice versa. Then the program is 

:ep:~~~:~~~~~~~~~:~~~~~~~~~~~ . ~* R COUN~ A~XT.~ER ~ 
b 00000000000000000000000000000000 ~ . _ _ . __ 

00000000000000000000000000000000 

IaI:<JI:<J ca Ir!:8IBI23 
L2 L2':=tr§1-----:J 

It uses indexed addressing to find the 
address for each byte. The total number of 
bytes in one block is loaded into the X 
register. Then, to store or load a byte, the 
number in the X register is added to the 

staning address for each block. The 
instruction DEX (decrement X) makes the 
computer subtract 1 from X so that, when 
the program repeats, the computer fetches 
the next byte back in the display. 

6502 screen flash program 
See the bottom ofthe opposite page for how to work out the values of n, a and b. Then 
subtract I from a and b so that when the computer adds X it gets the last address in each 
block, rather than the first address of the next line. (Make sure n, a and b are in hex.) 

Mnemonics Hex codes M eaninll 
LOX#n A2n Load X with the number of bytes in one block. 
LOA address a, X BD address a Put contents of location with address a + X into accumulator. 
TAY A8 Transfer contents of accumulator to register Y. 
LOA address b, X BOaddressb Put contents of location with address b + X into accumulator. 
STA address a, X 90 address a Store contents of accumulator at address a + X. 
TYA 98 Transfer contents of Y register back to accumulator. 
STA address b, X 90 addressb Store contents of accumulator at address b+ X. 
OEX CA Decrement X. Zero flag is set to I when X O. 

B N E to instruction two DOEF Branch back &EF locations if X is not equal to o. EF is the 
hex for two's complement of 17 (see page 37). 

RTS 60 Return 

Loading and running the program for the zao or 6502 
The best way to run this program is as a 3. Next, add the following lines to the end 

'machine code subroutine in the hex of the program: 
loader. To do this, follow these steps: 240 CALL 8ddress where machi ne 
1. Type in the hex loader and put the hex cod e i s s tor ed 

250 FOR K=l TO 500 
codes for your computer's 260 NEXT K Change figure 500 indelay 
microprocessor in line 160. 270 BDTO 240 loop to suit your computer. 

2. At line 180 you need two loops to poke 4. Now type RUN to run the program. The 
the characters for the display into the hex loader pokes the hex codes into the 
screen memory. For example, here are memory, then pokes the display codes 
the lines for two rows of * s (code 42) into the screen memory. Line 240 makes' 
followed by two rows olOs (code 48), for a go to the location where the machine c 
computer with a 40 column screen. program is stored and carry out the 

180 
190 
200 
210 
220 
230 

FOR J=O TO 79 
POKE first screen 
NEXT J 

instructions. By itself, the machine code 
program only swaps the display once, so 

address + J. 42 line 270 makes it call the program again 

FOR J=80 TO 159 
POKE first screen address + J~48 
NEXT J 

and again to make a flashing effect. You 
need the delay loop because the machine 
code is so fast. 

39 



Going further 
[f you want to find out more about machine code the best way is to try writing your 
own short programs and to test and study programs wri tten by other people. One 
good way to use machine code is as a short subroutine to carry out a particular task 
in a BASIC program. For instance, machine code is particularly suitable for sorting 
data or filling the screen with graphics because it is faster and takes less memory 
space than BASIC. You can find subroutines for dOing things like this in magazines. 
If the subroutines are written specially for your computer you can run them without 
alteration. If they are written for another make of computer which uses thesame 
microprocessor you will need to change any addresses in the program for 
addresses in the area in your computer's memory that you have chosen to store 
machine code. 

Machine code subroutines 
Here are the steps you need to follow to use 
a machine code subroutine in a BASIC 
program. 
1. Make room in the memory for the 
machine code by lowering the top of user 
RAM (see pages 20-22). 
2. Put the codes for the machine code 
subroutine into line 160 of the hex loader 
program on page 24. (Make sure there is a 
return instruction at the end of the machine 
code program.) Add lines to poke in any 
data bytes if necessary, then type in and run 
the hex loader. 
3. Number your BASIC program using line 
numbers starting after those used in the hex 
loader. At the point where you want the 
computer to carry out the machine code, 
put your computer's command for running a 
machine code program as a line in the 
BASIC program. 

This tells the 
computer to go to 
location 16002 and 
carry out the 
instructions there. 

B 
'a ""1S /C 

<0 ~~ 
30~ 
s~o~ 

6c c"'I£.<.. ~ 
;tc ~. - 1"00 

"'-c.,. ~ -< 
4. Type the BASIC program into your 
computer and then type RUN. The 
computer will carry out the BASIC 
instructions and when it reaches the line 
telling it to run the machine code program it 
will go to the address where the machine 
code is stored and carry out the 
instructions. The return instruction at the 
end of the machine code will send the 
computer back to the next line in the BASIC 
program. 

Using an assembler 

An assembler (a program which enables 
you to type in a machine code program in 
mnemonics) makes machine code 
programming much easier. You can buy 
an assembler on cassette for most home 
computers and some, such as the BBC, 
have a built-in assembler. 

With an assembler you can type in 
comments alongside the mnemonics to 
remind you what each line does. The 
assembler will then display the program 
on the screen in hex and mnemonics, with 
the addresses where the instructions are 
stored and the comments. 

The assembler will automatically 
reverse the pairs of digits in addresses 
and work out the address or displacement 
for a jump. Some assemblers allow you to 
use symbolic names for data, like 
variables in BASIC. A good assembler 
also has a debugger to find mistakes and 
an editor to help you correct them. 

Suggested books 
There are lots of books on machine code 
specially written for one partiCu!ar make of 
microcomputer. The best way to choose 
one is to read the reviews in computer 
magazines. You may also find the following 
books useful: 
Programming the Z80 and Programming 
the 6502, both by Rodney Zaks and 
published by Sybex. These are very 
detailed guides with complete lists of all the 
instructions for each microprocessor. They 
are not easy to read for beginners, but they 
are useful for reference. 
VIC 20 Programmer's Reference Guide 
published by Commodore. 
6502 Machine Code for Beginners by A. P. 
Stephenson, Newnes Microcomputer Books. 

.t: 
Cl 
'6 
)( 

" • ~ 
i!! 
i.: 

., 

.t: 
Cl 
'6 
)( 

" • ~ 
" ~ i.: 

Decimal/hex conversion charts 
Thls chart converts hex numbers from 0 to Ft to decimal and vice versa. 

Hex to decimal 
To convert a hex number to decimal read 
along the row for the first hex digit in your hex 
number and down the column for the second 
hex digit. The number where the row and 
column meet is the decimal equivalent for 
your hex munber, e.g. hex Al is decimal 161. 

Decimal to hex 
To convert a decimal number to hex, find 
the decimal number in the chart. Then read 
back along the row for the first hex digit and 
up the column for the second hex digit e.g . 
154 is 9A. 

Second hex digit 
0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 
1 16 17 18 19 20 21 22 
2 32 33 34 35 36 37 38 
3 48 49 50 51 52 53 54 
4 64 65 66 67 68 69 70 
5 80 81 82 83 84 85 86 
6 96 97 98 99 100 101 102 
7 11 2 113 114 115 116 117 118 
8 128 129 130 131 132 133 134 
9 144 145 146 147 148 149 150 
A 160 161 162 163 164 165 166 
B 176 177 178 179 180 181 182 
C 192 193 194 195 196 197 198 
0 208 209 210 21 1 212 213 214 
E 224 225 226 227 228 229 230 
F 240 241 242 243 244 245 246 

Converting addresses 
To use the chart to convert hex addresses, 
look up the decimal equivalent for the first 
pair of digits in the address. This is the page 
number. Then look up the decimal 

7 8 9 A B C 0 E 
7 8 9 10 11 12 13 14 

23 24 25 26 27 28 29 30 
39 40 41 42 43 44 45 46 
55 56 57 58 59 60 61 62 
71 72 73 74 75 76 77 78 
87 88 89 90 91 92 93 94 

103 104 105 106 107 108 109 11 0 
119 120 121 122 123 124 125 126 
135 136 137 138 139 140 141 142 
151 152 153 154 155 156 157 158 
167 168 .169 170 171 172 173 174 
183 184 185 186 187 188 189 190 
199 200 201 202 203 204 205 206 
215 216 217 218 219 220 221 222 
231 232 233 234 235 236 237 238 
247 248 249 250 251 252 253 254 

equivalent for the second pair of digits to 
find the position on the page. Multiply the 
page number by 256 and add the position 
on the page. 

Two's complement conversion chart 
This chart gives the two's complement in 
hex of decimal numbers from -I to -128. 
To convert a number to two's complement, 

find the number in the chart, then read 
along the row for the first hex digit and up 
the column for the second digit. 

Second hex digit 

F E 0 C B A 9 
F 1 2 3 4 5 6 7 
E 17 18 19 20 21 22 23 
0 33 34 35 36 37 38 39 
C 49 50 51 52 53 54 55 
B 65 66 67 68 69 70 71 
A 81 82 83 84 85 86 87 
9 97 98 99 100 101 102 103 
8 113 114 115 116 117 118 119 

Doing conversions on a calculator 
When you do conversions on a calculator 
the calculator displays the remainder as a 
decimal number. For example, if you are 
converting decimal 134 to hex you divide by 
16 then convert the answer and remainder 
to hex digits. A calculator would give you 
the answer as 8.375. 

8 7 6 5 4 3 2 1 
8 9 10 11 12 13 14 15 

24 25 26 27 28 29 30 31 
40 41 42 43 44 45 46 47 
56 57 58 59 60 61 62 63 
72 73 74 75 76 77 78 79 
88 89 90 91 92 93 94 95 

104 105 106 107 108 109 110 11 1 
120 121 122 123 124 125 126 127 

To convert the remainder to a whole 
number you subtract the number before the 
decimal point, then multiply by the number 
you divided by. 

8.375 - 8= 0.375 x 16 = 6 

So 134 .,. 16 = 8 remainder 6 therefore 
decimal 134 is 86 in hex. 

F 

15 
31 
47 
63 
79 
95 

111 
127 
143 
159 
175 
191 
207 
223 
239 
255 

0 
16 
32 
48 
64 
80 
96 

112 
128 

41 



Z80 mnemonics and hex codes 
The mnemonics and hex codes for the instructions covered in this book are givenon 
the next few pages. The term "impllcit addressing" used in these llsts is just the name 
for instructions where no operand need be specified in the hex code. There are a 
few other instructions not llsted here and if you want to go further with machme code 
you will need a complete llst of the Z80 instruction set (see page 40). The following 
abbreviahons are used in these llsts: 
n = number rr = register pair c = condition 
nn = two byte number x = address d = displacement 
r = register 

ADC A,D Add with carry, a CALL x Go to subroutine DEe r Decrement register r. 
number, n, to the accumulator. starting at address x. (Implicit addressing.) 
(Immediate addressing.) (Immediate addressing.) 

DECA 3D 
ADCA,n CE,n CALLx CDx DECB 05 

CALL c,X Go to subroutine DECC OD 
ADC A,r Add with carry, 

starting at address x DECD 15 register r to the accumulator. 
(Implicit addressing.) depending on condition c. DECE 1D 

cmaybe Z(equal); NZ (not DECH 25 
ADCA,A 8F equal); C (carry);NC (no DECL 2D 
ADCA,B 88 carry); PE (parity even); PO 

DEe rr Decrement register ADCAC 89 (parity odd); M (minus) or P 

ADCA,D 8A (plus). (Immediate pair IT. (Implicit addressing.) 

ADCA,E 8B 
addressing.) DECBC OB 

ADCA,H 8C CALLZ,x CC,x DECDE 1B 

ADCA,L 8D CALLNZ,x C4,x DECHL 2B 
CALL C,x DC,x DEC IX DD2B 

ADC HL,rr Add with carry, CALLNC,x D4,x DECIY FD2B 
the contents of register pair IT CALL PE,x EC,x DEC (HL) Decrement to HL. (Implicit addressing.) CALLPO,x E4,x contents of address held in HL. 

ADCHL,BC ED4A CALLM,x FC,x (Indirect addressing.) 
ADC HL,DE ED5A CALLP,x F4,x 

DEC (HLI 35 
ADC HL,HL ED6A CCF Complement carry flag. 

(Implicit addressing.) INe r Increment register r. 
ADDA,D Addanumber,n,to (Implicit addressing.) 
the accumulator. (Immediate CCF 3F 
addressing.) INCA 3C 

CP n Compare contents of INCB 04 
ADD,n C6,n accumulator with data n . INCC OC 

(Immediate addressing.) 
INCD 14 ADD A,r Add register r to the CPn FE n INCE 1C accumulator. (Implicit 
INCH 24 addressing.) CP r Compare contents of 

register r with the accumulator. INCL 2C 
ADDA,A 87 (Implicit addressing.) 
ADDA,B 80 INC n Increment register pair 

ADOA,C 81 
CPA BF' IT. (Implicit addressing.) 

ADDA,D 82 
CPB B8 INCBC 03 

ADDA,E 83 
CPC B9 INCDE 13 
CPD BA 

ADDA,H 84 INCHL 23 
ADDA,L 85 

CPE BB 
CPH BC INC (HL) Increment contents 

ADD HL,rr Add the contents CP L BD of address held in HL. (Indirect 

of register pair IT to HL. addressing.) 

(Implicit addressing.) CP (UL) Compare contents of 
INC(HLI 34 accumulator with contents of 

ADD HL,BC 09 address held in HL. (Indirect JP x Jump to address x. 
ADD HL,DE 19 addressing.) (Immediate addressing.) 

ADD HL,HL 29 CP(HLI BE JPx C3x 

-

JP (rr) Jump to address held in lID A, (x) Load accumulator LD E,r Load register E with 
register pair IT. (Implicit '. with contents of address x. the contents of register r. 
addressing.) (Absolute addressing.) (Implicit addressing.) 

JP(HLI E9 LDA,(xl 3A,(xl LD E,A 5F 

JP (lXI DDE9 LDE,B 58 

JP (lYI FDE9 LD n, (x) Load register pair IT LDE,C 59 
with contents of addresses x LDE,D 5A 

JP c,x Jump to address x and x+ 1. (Absolute LD E,E 5B 
depending on condition c. addreSSing.) LDE,H 5C 
c maybe Z (equal); NZ (not 

LD BC, (xl ED4B,(xl LD E,L 5D 
equal); C (carry); NC (no 

LD DE, (xl ED5B,(xl LD H,r Load register H with carry); PE (parity even); PO 
(parity odd); M (minus) or P LD HL, (xl 2A,(xl the contents of register r. 
(plus). (Immediate (Implicit addressing.) 
addressing. ) LD A,r Load the accumulator 

LDH A 67 with contents of register r. 
LDH,B 60 JPZ,x CA,x (Implicit addressing.) 

JP NZ,x C2,x LDH,C 61 

JPC,x DA,x 
LDA,A 7F LDH,D 62 

JP NC.x D2,x 
LDA B 78 LDH,E 63 
LDA,C 79 

JP PE,x EA,x LDH,H 64 

JP PO,x E2,x 
LDA,D 7A LDH,L 65 
LDA,E 7B 

JPM,x FA,x 
LDA,H 7C LD L,r Load register L with the 

JPP,x F2,x 
LDA,L 7D contents of register r. (Implicit 

addressing.) 
JR d Jump relative. Jump d 

LD B,r Load register B with LD L,A 6F bytes (the displacement). 
the contents of register r. LDL,B 68 (Relative addressing.) 
(Implicit addressing.) LDL,C 69 

JRd 18 d 
LDB,A 47 LDL,D 6A 

LDB,B 40 LD L,E 6B 
JR c,d Jump relative. Jump d 
bytes (the displacement) LDB,C 41 LDL,H 6C 

depending on condition c. LDB,D 42 LD L,L 6D 

c may be NZ (not equal); Z LDB,E 43 LD r, (n) Load register r with 
(equal); NC (no carry) arC LDB,H 44 contents of address held in 
(carry). (Relative addressing.) LDB,L 45 register pair IT. (Indirect 

JR NZ,d 20,d 
addressing.) 

JRZ,d 28,d LD C,r Load register C with LOA, (BCI OA 

JR NC,d 30,d 
the contents of register r. LDA,(DEI 1A 

JRC,d 38,d 
(Implicit addressing.) LDA,(HL) 7E 

LDC,A 4F LD B,(HLI 46 
LD r,n Load register r with LDC,B 48 LD C,(HL) 4E 
data n. (Immediate LDC,C 49 LD D,(HLI 56 
addressing.) LDC,D 4A LDE,(HLI 5E 

LDA,n 3E,n LDC,E 4B LD H,(HLI 66 

LDB,n 06,n LDC,)-I 4C LD L,(HL) 6E 

LDC,n OE,n LDC,L 4D LD (x),A Store the contents of 
LOO,n 16,n the accumulator in address x. 
LDE,n 1 E,n LD D,r Load register D with (Absolute addressing.) 
LD H n 26,n the contents of register r. 

32,x (Implicit addressing.) LD (xl,A 
LD L,n 2E,n 

LDD,A 57 LD (x),rr Store the contents of 
LD rr,nn Load register pair rr LDD,B 50 register pair IT at addresses x 
with two byte number nn. LDD,C 51 and x + 1. (Absolute 
(Immediate addressing.) 

LDD,D 52 
addressing.) 

LD BC,nn 01,nn LDD,E 53 LD(xl,BC ED43,x 
LD DE,nn 11,nn LDD,H 54 LD (xI,DE ED53,x 43 
LD HL,nn 21,nn LDD,L 55 LD (xI,HL 22,x 



LD (rr),r Store the contents of RETC D8 SBC A,(HL) Subtract with 
register r at the address held in RETNC DO carry the contents of address 
register pair IT. (Indirect RETPE E8 held in register pair ill, from 
addressing.) RETPO EO the accumulator. (Indirect 

LD(BC)A 02 RETM F8 addressing). 

LD(DE)A 12 RETP Fa SBCA,(HL) 9E 
LD (HL)A 77 SCF Set carry flag. (implicit 
LD(HLI,B 70 SBC A,n Subtract with carry 

addressing.) 
LD(HLI,C data n from the accumulator. 71 

(Immediate addressing.) SCF LD(HLI,D 72 37 

LD (HL),E 73 SBCA,n DE,n SUB n Subtract data n from the 
LD (HL),H 74 accumulator. (Immediate 
LD (HL),L 75 SBC A,r Subtract with carry addressing.) 

LD(rr),n Storedatanat 
contents of register r from the SUB,n D6,n 
accumulator. (Implicit 

address held in register pair IT. addressing.) SUB r Subtract contents of 
(Immediate/indirect register r from the 
addressing.) SBCAA 9F accumulator. (Immediate 

LD (HL),n 36 SBCA,B 98 addressing.) 
SBCA,C 99 

SUBA 97 RET Return from subroutine. SBCA,D 9A 
(Indirect addressing.) SBCA,E 9B 

SUBB 90 
SUBC 91 RET C9 SBCA,H 9C SUBD 92 

RET c Retwn from subroutine SBCA,L 9D 
SUBE 93 

depending on condition c. 
SBC HL,rr Subtract with carry SUBH 94 

ccanbe Z (equal); NZ (not SUBL 95 
equal); C (carry); NC (no contents of register pair IT from 

carry); PE (parity even); PO register pair ill. (Implicit SUB (HL) Subtract the 
(parity odd); P (plus); M addressing.) contents of address held in HL 
(minus). (Indirect addressing.) SBCHL,BC ED42 from the accumulator. (Indirect 

RETZ C8 SBC HL,DE ED52 addressing.) 

RETNZ CO SBC HL,HL ED62 SUB (HL) 96 

Puzzle answers 
.~ ~ ~ 

~="""';;;;';;;'~ZdY Page 11 complement of a number 15 to subtract It 
&A7in decimal IS 167. 513 mhexis &201 from 256, then convert the answer to hex. 
Page26 

E.g.~=25~his~e~ 1. 25+ 73 (25 is &19 and 73 is &49) 

zao 6502 
Mnemonics Hex codes Mne Hex codes Meaning 

LDA,&19 3E,I9 LDA#&19 A919 Put&19 in accumulator. 
ADDA,&49 C6,49 ADC #&49 6949 Add &49 to accumulator. 

Store contents of 
LD (address), A 32, address STAaddress 8Daddress accumulator at a -certain 

address . 
RET C9 RTS 60 Return 

2 64+12+14(64is&40 12 is &OC and 14is&OE) , 
Z80 6502 
Mnemonics Hex codes Mnemonics Hex codes Meaning 

LDA &40 3E 40 LDA#&40 A940 Put &40 in accumulator. 
ADDA &OC C60C ADC#&OC 690C Add &OC to accumulator. 
ADDA &OE C60E ADC#&OE 690E Add &OE to accumulator. 

Store contents of 
LD(address), A 32,address STAaddress 8Daddress accumulator at a certain 

address. 

RET C9 RTS 60 Return 

Puzzle answers continued on page 48. 

A 

0 

6502 mnemonics and hex codes 
This chart shows the mnemonics and hex codes for all the instructions (plus a few 
more) covered in this book. The mnemonic instructions are given down the left and 
the hex codes for each instruction in the different addressing modes are shown 
across the chart. Zero page addressing is just like absolute addressing, i. e . the 
operand is the address where the data is stored, but the address must be in page 
zero (i. e. locations 0-255) ofthe memory (see page la). Implied addressing is just the 
term used to describe instructions where no operand need be specified, e. g. CLC. 
There are a number of other instructions not given here, and if you want to go further 
with machine code you will need to get a complete list of the 6502 instructionset. 

.'J ~ >< >-
ddressing mode 

.,!? .'J en 

" " " 
~ 

" ~ • ~ ~ > 
~ " 

a.. 
~ " 

.,,! '" E " E' ~ ~ 0. • 
§ .0 

~ " " § 0; 
« .E .E er 

Data Any Address Address None 
perand is address in page + x +y ment 

zero register register 

ADC plus the 69 6D 65 7D 79 

Notethat not all the instructions can 
be used in all the addressing modes. 

(subtract I frorn) memory 

45 



Machine code words 

# Hash sign. This is the sign used on some 
computers to indicate hex numbers. For the 
6502 microprocessor it is used to indicate a 
piece of data. 
& Amper.;and sign. This is another sign 
used to indicate hex numbers. 
Absolute address. The actual address of a 
piece of data. 
Absolute addressing. An addressing 
mode in which the instruction contains the 
address of the data. Also called extended 
or direct addressing. 
Accumulator. The register where bytes of 
information on which arithmetical or logical 
operations are to be carried out, are held. 
Address. A number used to identify a 
location in the computer's memory. 
Addressing modes. The various ways in 
which you can tell the computer where to 
find the data to work on in a machine code 
program. 
Arithmetic logic unit (ALU). The area 
inside the CPU where arithmetical and 
logical operations are carried out. 
Assembler. A program which converts 
instructions written in assembly language 
mnemonics into the computer's own code. 
Assembly language. A method of 
programming the computer using letter 
codes, called mnemonics, to represent 
machine code instructions. 
Binary. A number system with two digits, 0 
and 1 and in which each digit in a number 
has twice the value of the digit on its right. 
Bit. A single unit of computer code, i.e. a 1 
or 0 representing a pulse or no-pulse signal. 
Buffer. A temporary storage area in the 
computer's memory where data is held on 
its way to or from its final destination. 
Branch. An instruction telling the 
computer to jump to another line in a 
program. 
Byte. A group of eight pulse and no-pulse 
signals (or "bits") which represents a piece 
of information in computer code. 
Carry flag. A bit in the flags register which 
is set to 1 when the result of an addition will 
not fit into eight bits. 
Clear. To make a bit, e.g. one of the bits in 
the flags register, zero. 
Complement. Also called "flipping the 
bits" this is the process of changing all the 
Os in a byte to 1 and all the Is toO. 

Conditional branch. An instruction which 
tells the computer to jump to another line in 
the program depending on the result of a test. 
Direct addressing. See absolute 
addressing. 
Disassembler. A program which can 
display the contents of a series of memory 
locations on the screen in assembly 
language. You can buy a disassembler on 
cassette and it is useful for debugging 
machine code p rograms and for examining 
the programs in your computer's ROM. 
Displacement. A number used in ajump 
or branch instruction to tell the computer 
how many locations to jump to find the next 
instruction. Also called an offset. 
flag. A bit in the flags register which is 
used to indicate a certain condition, e.g. the 
presence of a negative number, or of a 
carry over in an addition. 
Hexadecimal, or hex. A number system 
which uses 16 digits (the numbers 0-9 and 
letters A-F). Each digit in a hex number has 
16 times the value ofthe digit on its right. 
Hex loader. A BASIC program which 
converts the hex codes of a machine code 
program into decimal numbers and pokes 
them into the computer's memory. 
High order byte. The first two digits in a 
hex address which represent the number of 
the page in the memory where the address 
is. Also, the two digits which show how 
many 256s there are in a number larger than 
255. 
HIMEM. The highest address in user RAM. 
Immediate addressing. An addressing 
mode in which the data for an instruction is 
included in the instruction. 
Implicit addressing. An addressing mode 
in which the operand is understood and 
need not be specified. 
Implied addressing. Same as implicit, see 
above. 
Indexed addressing. An addressing 
mode in which the contents of an index 
register are added to the address given in 
the instruction to work out the actual 
address of the data. 
Index register.;. The registers used in 
indexed addressing and also, in the 6502, as 
general purpose registers. 
Indirect addressing. An addressing 
mode in which the operand is used as a 

pointer to the data. The operand may be an 
address or, in the ZBO, a pair orregisters, 
and it holds the address of the data. 
Instruction. An operation to be carried out 
by the central processing unit. 
Interpreter. A program which translates 
instructions in BASIC (or other high level 
language) into the computer's own code. 
Instruction set. All the operations which 
can be carried out by a particular 
microprocessor. 
Jump. An instruction which tells the 
computer to go to another line in the 
program. 
LIFO. This stands for "last in/first out" and 
describes the method used by the 
computer to store information in the stack. 
Low order byte. The two hex digits in an 
address which give the position of that 
address within a page of memory. Also, the 
two hex digits which show the number of 
units in a number larger than 255. 
Microprocessor. The chip which contains 
the computer's CPU and which carries out 
program instructions and controls all the 
other activities inside the computer. 
Mnemonic. A letter code used in 
assembly language to represent an 
instruction in the computer's own code. The 
word mnemonic (pronounced nemonic) 
means "to aid the memory" and assembly 
language mnemonics sound like the 
instructions they represent. 
Object code. A program which has been 
translated into machine code from 
assembly language or another high level 
language. 
Offset. See displacement. 
Opcode. The part of an instruction which 
tells a computer what to do. 
Operand. The part of an instruction which 
tells the computer where to find the data to 
work on. 
Operating system. A group of programs 
written in machine code and stored in the 
computer's ROM, which tell it how to carry 
out all the tasks it has to do. 
Page. A subdivision of memory. On most 
home computers a page is 256 locations. 
Pointer. A memory location (or pair of 
registers) which contains the address of a 
piece of data. 
Pop. To remove an item stored in the stack. 
Processor status register. This is the 6502 
name for the flags register (the register 
where each bit is used to record a certain 

condition inside the computer). 
Program counter. The register which 
contains the address of the next instruction 
to be fetched from the memory. 
Pull. Same as pop, i.e. to remove an item 
from the stack. 
Push. To place an item in the stack. 
RAMTOP. The highest address in user 
RAM. 
Register.;. The places in the CPU where 
bytes of instructions, data and addresses 
are held while the computer works on them. 
Relative addressing. An addressing 
mode in which the computer works out the 
address of the next instruction by adding a 
number called the displacement or offset, 
to the address in the program counter. 
Screen memory. The locations in RAM 
which are used to hold information to be 
displayed on the screen. 
Sign flag. The bit in the flags register 
which is used to indicate negative and 
positive numbers. 
Source code. A program written in 
assembly language, or other high level 
language such as BASIC. 
Stack. An area of the memory used by the 
computer for temporary storage and where 
the last item stored is always the first to be 
retrieved. 
Stack pointer. A register in the CPU which 
contains the address of the last item in the 
stack. 
Systems variables. Memory locations in 
RAM which hold information about the 
current state ofthe computer. 
Top of memory. The highest address in 
user RAM. 
Two's complement. A system of notation 
used to represent negative numbers. To 
find the two's complement of a number you 
complement (make all the Is into Os and all 
the Os into Is) the binary for that number and 
then add 1. 
User RAM. The part of RAM where BASIC 
programs are stored. 
Zero flag. The bit in the flags register 
which indicates when the result of an 
operation is 0 and is also used to show when 
two bytes are equal. 
Zero page. The first 256 locations in the 
memory. 
Zero page addressing. Used only on the 
6502, this is an addressing mode in which 
the operand is an address in page zero of 
the memory (i.e. from 0-255). 47 



Puzzle answers contin 
Page 28 

ued Decimal Hex 

48 

High order Low order High order Low order 

307 1 51 &01 &33 00011010 is 26 decimal. 
11111011 is 251 decimal. 
10101010 is 170 decimal. 

21214 82 222 &82 &DE 

759 2 247 &02 &F7 

1023 3 255 &03 &FF 

Page 31 
To adapt the program on page 27 for 
answers greater than 255 you need to delete 
the return instruction and add the lines 

given below. To see the result you use this 
command: 
PRINT PEEK( address 3) + PEEK( address 4)' 256. 

Z80 6502 Meaning 
Mnemonics Hex codes Mnemonics Hex codes 

LDA,&OO 3E,00 LDA#&OO A900 Put 0 in accumulator. 

ADC #&00 6900 
Add with carry, 0 10 

ADCA,&OO CE,OO accumulator. 

ST A address 4 8Daddress4 
Store contents of 

LD(address 4),A 32, address 4 accumulator at address 4. 

RET C9 RTS 60 Return. 

Page 37 
Hex for the two's complement of 12 is &F4; 18 is &EE and 9 is &F7. 

Index 13, 20-21 & ampersand sign, 8, 12, 16, 18, 46 dump, 19 
# hash sign, 12, 16. 18, 46 loader, S, 23, 24, 25. 46 RAMTOP, B, 20, 21, 47 

absolute addressing, 18,27,46 number system,S, 8, 11 , 46 lowering, 20-22 

accumulator, 14-15, 11,30,32, 46 high order byte, 19,28,30,31, 46 registers, 13-14,27,30,31, 47 

address, 8-9. Il, 19,46 HlMEM, 8, 20, 21, 46 relative addressing, 36, 47 

converting to hex or decimal, 11 immediate addressing, 18,27,33,46 REM statement, storing machine 

in machine code, 18·19 implicit addressing, 46 code in, 22 

addressing modes, 27, 46 implied addressing, 46 reserved for use of the operating 

ALU (arithmetic/logic unit), 13, 14,46 increment, 33, 34, 38 system, 8, 10 

ASCII code, 13,24,32 indexed addressing, 34, 39, 46 return instruction, 23, 36 

assembler,5,16,40,46 index registers, 14-16,46 ROM (read only memory), 6, 12, 13 

assembly lang,uage, 5, 17, 19,46 indirect addressing (Z80), 33, 38, 46 running a machine code program, 25 

Atari, 3, 24 instruction, 4, 5, 13-14, 16, 47 screen memory, 8, 13,47 

BASIC, 4, 12,20, 40 instruction set, 16,47 set, to, 29 

big numbers . 28, 30-32 interpreter, 4, 8, 20, 47 sign flag, 14, 36,47 

binary, jumps, 33, 35, 47 source code, IS, 47 
LIFO, 10,47 Spectrum, 13, 24,32 

code, 4, 5, 16 
numbers, 4, 19, 2S, 46 locations, memory, S-9, 10, 11, 12-13 stack, 10, 14, 15,20,35,47 

to hex conversion, 37 lowering RAMTOp, 21 s tack pointer. 14-15, 47 

bit, 4,46 low order byte, 19, 28,30-31,47 subroutines, 35 

branch, 34, 35, 46 machine code , systems variables, 10,20,21,47 

buffers, 10, 46 checklist, 26 Timex 1000,9, 13,22,24 

byte, 4, 13, 19,20, 46 length of program, 20 Timex 2000, 13,24,32 

carry flag, 14.15, 17, 29,30,31,36,46 subroutines, 39, 40 top of memory, 20, 21, 47 

carrying over numbers in addition, 29 , w here to store in memory, 20-22 two's comple ment , 37, 41, 47 

30,31 memory, S-9, 10. 12- 13 user~,S,20,47 

character codes, 13,32 memory map, 8 VIC 20, 7, 13,22 

clear, to, 29, 46 microprocessor, 7, 16,47 zero flag, 32, 33, 34. 36, 47 

Commodore 64, 3, 7 mnemonics, 5, 16-11,47 zero page, 10,45, 47 

comparing, 32 object code, IS, 47 zero page addressing, 45, 47 

complement, 46 offset, 36-37, 47 ZXB1, 9,13,22,24 

conditional branches , 35, 36-37, 46 opcode, 16, IS, 19,47 
control unit, 13, 14 operand, 16, 18, 27, 47 Hex loader conversions 
CPU (central processing unit), 7, operating system, S, 10, Il, 13,20,47 Change these lines for the ZXSl 

14-15, 16. 19 Oricmicro, 3, 7,21 
(Timex 1000): 

crash,20 overflow bit, 36 
databytes, 23, 28 page (of memory), 10, 11, 19, 21,47 40 INPUT H$ 

decimal numbers, 11, 41 parity/overflow bit, 36 70 LET X= 

decrement, 36, 38 PEEK, 12-13, 21, 26, 31 (CODE(Hoj,) ~2B)*16 

direct addressing, 27, 46 pointer, 33, 47 80 Delete 

disassembler.46 POKE, 12-13, 23 9 0 LET Y=CODE 

displacement. 36-37, 46 pop, 35, 47 (H${2 TO ) ) -28 

display file , 8 position on page (of address), 11 , 19. 100 LET X=X+Y 
extended addressing, 27 21 l10 Delete 
flags register, 14-15, 17,29,36 processor status register, 15,29. 47 155 De1ete 

hex. (see also flags register) 160 Delete 

codes, 16, IS, 19 program counter, 14-15,35, 47 Change this line for Atari computers: 

converting 10 decimal, 11 , 41 RAM (random access memory), 6. 12, 90 LET Y=ASC(A$C) ) 

" , 

Other Usbome Books 
There are hundreds of colourful Usbome books for all ages on a wide range of 
subjects, Titles which may be of particular interest to you are: 

This exciting new series takes a serious look at what is happening now in the world of new 
technology. Many people think that such things as lasers, robots, databases and interactive TV 
belong only to the world of science fiction but, as these brilliantly illustrated books show, many of 
them are already in use and affecting our everyday lives. The books take a straightforward approach 
to these apparently difficult subjects, making them easy for everyone to understand. 
Page size: 240 x 170 mm 48 pages 

This up-to-the-minute series on electronic technology explores the worlds of computers, TV and 
video, audio and radio and, in a new title, films and special effects, In a clear visual way, the books 
describe the very latest equipment and show what it does and how it works. They also explain much 
of the confusing technical jargon which usually surrounds these subjects. There are fascinating 
sections on what computers can do for us and how they do it, how TV and video cameras can twn an 
ordinary scene into a pattern of electronic signals that can be stored on tape, and how a recording 
srudio works. Audio & Radio also contains instructions for building a simple radio. 
Page size: 276 x 216 mm 32 pages 



--- Us borne Computer Books 
Usborne Computer Books are colourfu l. straightforward and easy-to­
understand guides to the world of hom e computing fo r beginners of al l ages. 

USbbfneGuideto Computers A colourful introduction to the world of 
computers. "Without question the best general introduction to computing I have 
ever seen. "Personal ComputerWorld 

Understanding the Micro A beginner's guideto microcomputers;howto use 
them and how they work. " This introduction to the subject seems to get 
everythingright. " Guardian 

Computer Programming A simple introduction to BASIC for absolute 
beginners. " ... lucid and entertaining . .. "Guardian 

Computer and Video Games All about electronic games arid how they work, 
with expert's tips on howto w in. 'The idea l book to convert the arcade games 
freak to rea l computing."Computing Today . 

Computer Spacegames, Computer Battlegames Listings to ru n on the ZX81 , 
Spectrum, BBC, TRS-80,Apple, VIC20and PET. "Highly recommended to 
anyone of ,,-ny age. "Computing Today 

Practical Thingsto do with a Microcomputer Lots of programs to run and a 
ro!:>otto build which "ViII work with most micros. 

Computer Jargon An illustrated guide to all the jargon. 

Computer Graphics Superbly illustrated introduction tocomputergraphics 
with programs and a graphics conversion chartfor mostmicros. 

Write Your Own Adventure Programs Step-by-step guide to writing adventure 
games programs, with lots of expert's tips. 

Machine Code for Beginners A really simple introduction to machine code for 
the Z80 and 6502. 

BetterBASIC A beginner's guide to writing programs in BASIC. 

Inside the Chip Asimple and colourful account of how the chip works and what 
itcan do. 

+001·99 

ISBN 0-86020-735-8 

ISBN 0 86020 735 8 [1.99 


