——USBORNE INTRODUCTION TO-@-

WIRICHINE CODE
TOR BEGINNERS

D, MASoN
USBORNE INTRODUCTION TO

IMAICHIINGE CODE
rOR BEGINNERS

Lisa Watts and Mike Wharton

lllustrated by Naomi Reed and Graham Round
Designed by Graham Round and Lynne Norman
6502 consultants: A. P. Stephenson and Chris Oxlade

Contents
4 What is machine code?
6 Getting to know your computer
8 The computer's memory
11 Hex numbers
12 Peeking and poking
14 Inside the CPU
16 Giving the CPU instructions
18 Translating a program into hex
20 Finding free RAM
23 Loading and running a program
27 Adding bytes from memory
28 Working with big numbers
29 The carry flag
30 Big number programs
32 Displaying a message on the screen
35 Jumping and branching
38 Screen flash program
40 Going further _
41 Decimal/hex conversion charts
42 780 mnemonics and hex codes
45 6502 mnemonics and hex codes
46 Machine code words
48 Index

First published 1983 by Usborne Publishing Ltd, 20 Garrick Street, London WC2E 9B], England.

+ 1983 Usborne Publishing

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system or tansmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior

permission of the publisher.
The name Usborne and the device =* are Trade Marks of Usborne Publishing Ltd.
Printed in Spain by Printer Industria Gréafica, 5. A. - Depdsito Legal B. 33.755/1983

About this book

This book is a simple, step-by-step
guide to learning to programin
machine code. Machine code isthe
code in which the computer does allits
work and programs written in machine
code run much faster and take up less
memory space than programsin
BASIC. A machine code program,
though, is much more difficult to write
and less easy to understand thana
programin BASIC, -

This book takes you in very easy
stages through the basic principles of
machine code. It shows you how to
write simple machine code programs,
for example, to add two numbers or
flash a message on the screen, and how
toload and run a machine code
Prograrm on your computer.

The book is specially written for
computers with a Z80 or 6502
microprocessor.* The microprocessor
isthe chip which contains the
computer's ceniral processing unit and
computers with different
microprocessors understand different
machine code. All computers with the
same type of microprocessor, though,
use the same machine code.

Machine code is difficult and very
laborious, with lots of rules to obey and
small details to remember. Don't worry
if yvou find it very hard at first. It seems
confusing as you cannot read and
understand a program in machine code
—it's just a string of letters and numbers.
Bugs are very difficult to spot, too, and
have disastrous results if you miss them,
When you are working in machine code
you have to be very careful and
methodical and check everything two
or three times.

is no point in writing long programs in
machine code — some things canbe
done justas well in BASIC. For certain
tasks, though, such as speeding up the
action in games prograims or creating
fantastic screen effects, youneed touse
machine code. This book shows you
how to make your programs more
exciting by using short machine code
subroutines in BASIC programs.

some conversion charts to help you
when you are writing machine code,
and a list of machine code wordsto
explain all the jargon. There are also
lots of puzzles and ideas for short
programs to write, with answers on
page44.

*The Spectrumand ZX81 (Timex 2000 and 1000) use the Z80 microprocessor and the VIC 20, the BBC,
the Atari computers and the Oric use the 6502. The Commodore 64 uses the 6510 and understands

6502 machine code.

Programming in machine code

Whatis machine code?

There are several different ways of writing machine code programs. You could write allthe
instructions in binary numbers, but this would be very tedious. Instead, you can use another

Machine code is the code in which the
computer does all its work. When you give
a computer a program in BASIC, allthe
instructions and data are translated into
machine code inside the computer.

In machine code, each instruction and
piece of information is represented by a
binary number. Binary is a number system
which uses only two digits, 1 and 0. Youcan
write any number in binary using lsand
0s.*

Inside the computer, the binary numbers
are represented by pulses of electricity,
with a pulse for a 1 and no pulse fora 0. The
pulses and no-pulses are called “bits”, short
for binary digits.

The bits flow through the computer in
groups of eight and each group is called a
“byte”. Each byte of pulses and no-pulses
represents the binary number for one
instruction or piece of information in
machine code.

Each task the computer can carry out, such
as adding two numbers or clearing the
screen, involves a sequence of several
instructions in machine code. When you
give the computer a BASIC command, a
special program called the “interpreter”
translates your command into the machine
code instructions the computer

*You can find out more about binary on page 28,

understands.

The term machine code is also used to
refer to programs written in a form which is
much closer to the computer’s code than
BASICis. In a machine code program you
have to give the computer all the separate
instructions it needs to carry out a task such
as clearing the screen.

number system called hex, short for hexadecimal. Once you get used toit, hex ismuch

easier to work with than binary.

Machine code programs can also be written in a code called “assembly language”. In
assembly language each instruction to the computer is represented by a “mnemonic”
(pronounced nemonic) —a short word which sounds like the instruction itrepresents.

3E isthe hex code for an
instruction.

This is a program for
computers with a Z80
microprocessor. You
can find out how the
program works later in
‘the book.

This is part of a machine code programin
hex. The hex number system has sixteen
digits and uses the symbols 0-9 and A-Fto

represent the numbers 0to 15. (You canfind

out more about hex later in the book.) The
hex number at the beginning of each line of
the programis an instruction (e.g. 3E). Itis
the hex equivalent of the binary code for
that instruction.

Assembly
language

LD A isthe mnemonic
for an instruction.

programio
add 2+4.

This is the same program in assembly
language. Each line contains the mnemonic
for one instruction and is the equivalent of
the hex number in the same line on the left.
For example, the mnemonic LD A

y(pronounced “load A") means the same as

the hex number 3E. In both these programs,
each line contains an instruction which is
the equivalent of a single instruction inthe
computer's own code.

own code.

language you need a special program
called an “assembler” which translates the

mnemonics into the computer’s code. Some

computers have a built-in assembler; with
others, you can buy an assembler on
cassette and load it into the computer’s
memory. Alternatively you can write a
machine code program using the

mnemonics of assembly language (they are
easier to remember than numbers), then

translate them into hex before you give

them to the computer. Some computers will
accept hex numbers; with others youhave

to give them a short program, called a “hex
loader”, which translates them for the

computer. There is a hex loader program

on page 24 which you can use to load the 5
machine code programs in this book.

Getting to know your computer

When you program a computer in
machine code you have to tell itexactly
whatto do at each stage: where to find inside chip.
and store data, how to printonthe

screenand so on, (When youare

working in BASIC, special programs " = , J

Inside the computer take care ofall this ‘ : a2 i X\ =004 : e

for you.) In order to give the computer B Mot e o o : Ry
the correct machine code instructions,
youneed a good idea of what isgoing

Inside a computer

circuit board

oninside your computer. The pictures Inside the keyboard of a microcomputer 'Ifhe proper name for a chip isan instructions in binary code, flowing

on these two pages show the parts there is a printed circuit board. This has "lntegratEd_CiIcuit" and inside each chip through the circuits in the chips. There

inside a home computer, and what they metal ftracks printed on it, along which there are microscopic el_ectrical circuits. are different chips for carrying out

are for. You can find out more about electr}c currents can flow. Attached to Allthe computer's work is dpne by different tasks. The work done by the

them on the next few pages. the printed circuit board therearea streams of pulses representing different kinds of chips is shown in the
number of chips. picture below.

¥
P A s
PULSE

What the chips do

This picture shows the work carried out by
the different chips inside the computer.
Messages flow between the chips in the form
of bytes, i.e. groups of eight pulse and no-
pulse signals representing data and
instructions.

Clock

This is a quartz crystal which pulses millions of
times a second and regulates the flow of pulses
inside the computer.

The ROM chips

between the chips along the tracks
of the printed circuit board. There are three '} :
S _ separate systems of tracks for carrying bytes
G for doing different jobs. Each system of
ROM stands for “read only memory”. The tracks is called a “bus”.
machine code instructions which tell the
computer what to do are stored in the ROM
chips. It is called a read only memory
because the computer can only read the
information in ROM, it cannot store
new information there. On most home
computers, the interpreter (the
program which translates BASIC
into computer code) is in the ROM

The RAM chips
RAM stands for
“random access

memory”. This is where B =1 by e

the programs you give the Themicroprocessor

computer are stored while the The microprocessor chip holds the computer's
computer is working on them. It is central processing unit, or CPU. This is where all

called a random access memory the computer’s work is done. The CPU does
because the computer can find, or access, calculations, compares pieces of data, makes
any piece of information anywhere in the decisions and also co-ordinates all the other
memory. When you switch the computer off activities inside the computer. The information

the information stored in RAM is wiped out. telling the CPU what to do is in the ROM.

The computer’'s memory

The easiest way to think of the computer's memory isas lots of little boxes, eachof !

which can hold one byte, i.e. one instruction or piece of information inmachine

code. Each box in the memory is called a "location”, and each location hasa

number, called its “address”, so the computer can find any box in the memory. i
Different areas of the memory are used for storing information for different tasks

and a chart giving the address where each area startsis called a 'memory map".
When youare programming inmachine code you have to tell the corqputer_ _

where to find or store each instruction or piece of information. You do this by giving

it the address of a memory location. Youeven have to tell it where to storethe

machine code program itself, so you need to get to know the memory map ofyour

computer.

Memory addresses

Inside the computer, memory addresses are
represented by two bytes of computer code, i.e. 16
pulse or no-pulse signals or “bits”. The largest
possible memory you can have ona

. microcomputer which uses a Z80 or 6502
microprocessor is 64K (ROM and RAM combined).

- This is because the biggest number you can make
with 16 binary digits is 65535, so this is the highest
possible address. This gives 65536 locations,
numbered from 0 to 65535. Each location holds one
byte, 1024 bytes make a kilobyte (K) and 65536
bytes equal 64K (65536 < 1024 = 64).

The memory map

The picture on the right shows the memory map of
a home computer. There should be amap for your
computer in your manual. The memory is
organized differently in different makes of

OntheZX81 (Timex
1000) the boundary
between the screenf{ 1

computer, so your map will look different from this memory and user
one. y RAM changes
The memory map may be drawn as a column Variable storage depending on the
like this, or horizontally. The address at which each Wi e isrLst%frtg z rr\Jﬂl'OQ ram
i i i i - .
of the different areas in the memory starts is given User RAM (

alongside the map and it may bea decimal number
or a hex number, or both, as here. Inthis bookhex
numbers are distinguished by a & sign
(ampersand) before the number. Your manual may

use a different symbol, e.g. $, %, or #. The boundary

between user
RAM and
variable storage
moves up ordown
depending on
how much spaceis
needed for variables.

The highest address in user RAM
iscalled "RAMTOP", oronsome
computers, “HIMEM".

User RAM
This is where the programs you type inare
stored. The data for variables and arraysis
stored at the top of user RAM.

If you add extra memory
to your computer, the
addresses of some of the
areas may change. There
should be information
aboutthisin your manual.

The memory mapincludes
both ROM and RAM. The
operating system and the
BASIC interpreter arein
ROM and the rest of the
areasonthemaparein
RAM.

Inside the computer’'s workspace

This picture gives a closer view of the area of the computer’s memory reserved for use by
the operatmg system. There may be a second detailed map of this area in your manual, ora
list of the various addresses and what they are used for. On some computers(e.g.
Sinclair/Timex), the locations used by the operating system are not in one group and are

distributed throughout the memory.

A

4
3

y

§

i\&'

More about stacks

The computer uses the stacks to store
temporary data ina particular way. The last
item to be stored must always be the first to
beretrieved. This is called LIFO storage:
last in, first out.

Hex numbers

Ina machine code program, numbers and addresses are always written inhex.
Below you can find out how to convert decimal numbers to hex, and vice versa.

Decimal 0|1|/2|3(4|5(6 |7 |8|9(10]/11|12|13|14|15
Hex 0|1/]2|3|4|5|6|7|8|9(A|B|G|D|E|F

This chari shows the hex digits (0-9and digits, just as you do in the decimal system
A-F) and their decimal values. To make to write numbers over 9. The value of each
numbers over 15 (F) youuse two (or more) digit depends on its position in the number.

: ACA s hex i
Decimal for 1226,
Ax

1000s | 100s | 10s | 1s
1 2 2 6 L &y
Ina hex number the first d1g1t on theright
also shows the number of 1s but the next

Inthe decimal system the first digit onthe
right of a number shows how many lsthere

digit shows the number of 16s, and the third
digit shows the number of 256s (167).

are, the second shows the number of 10s,
the third, the number of 100s (10%), etc.

6 | Canyouconvert
[&A7todecimaland
decimal 513to hex?
(Answers page 44.)
\._.-A-.__d'-_

Decimal to hex
To convert a decimal number e.g. 1226, to

1226 +-250 = osiconsvsaimsvnin 4isd4inhex
hex, first you divide by 256 to find howmany remainder 202

256s there are in the number. Then you
divide the remainder by 16 to find the e .
number of 16s and the remainder fromthis ~ Yemainder 10.......cc..ceeuee.
sum gives the number of 1s. Finally, convert : y

the answer to each sum to a hex digit.* 1226is4CAinhex

AVl =a P e rr 12is Cinhex
10is Ainhex

Converting hex addresses
Inahexaddress, e.g. 5C64, the two left-hand digits show which page (see opposite) the
location is on and the second pair of digits shows the position on the page.

To convert a hex address to decimal, first To convert a decimal address to hex you

convert each pair of digits to a decimal have to divide by 256 to find the memory

number, as shown above. Then multiplythe page number. The remainder givesthe

page number by 256 (there are 256 position on the page. Then you convert the
locations in a page) and add the numberfor figuresto hex digits as described above.

the position on the page. 11

*Sée page 41 for how to do this on a calculator.

Peeking and poking

Two BASIC words, PEEK and POKE, *
enable youto look at the bytes stored in
the computer's memory locationsand
change them. You use PEEK and POKE
with the decimal, or onsome
computers, hex, address of amemory
location. Remember, to give the
computer hex numbers you must type a
signsuchas &, # (called hash) or$
before the number. Check this in your
manual as it varies on different
computers and some computers will
acceptonly decimal numbers.

Using PEEK

86725 |ur-{8626 |-pr-{8627
faezo gezl 8622 phkiae?3
86i5 86l6 POKE 8616, 50
74 QA%
PEEK (861-51

You can peek into any location in your
computer’s memory, but you can only poke
new bytes into RAM locations because the
bytes in ROM cannot be changed.

PRINT PEEK (123435)

PRINT FEEK(720)
240

PRINT PEEK (B5643)
o]

LET A=PEEK {1024)
FPRINT A

176

h AN

30 NEXT J

10 FOR J=700 TO 725

46 20 PRINT PEEK(JI)sz", s

j

Thesearethe
decimal equivalents
of bytes of

4

Totell the computer to look in a memory
location you use PEEK (or your computer's
cormnmand) with the address of that location.
To see the result on the screen, use PRINT
PEEK, or store the result in a variable using
LET and then print out the variable, as
shown above left.

Poking

computercode.

Try writing a short program using a FOR/
NEXT loop, like the one in the centre above,
to print out the bytes from a series of
locations. Look at your computer’s memory
map and experiment with addressesin
different parts of the memory.

Thistellsthe

computerto put 60

in location 16763.

Use PRINT PEEK ¢ b= o

to seethe result.

The picture above shows you how to use
POKE. You can poke anywhere in RAM, but
if you poke new values into the area
reserved for use by the operating system
you may disrupt the workings of the
computer. You can restore it to normal by
switching off and on again. Try writing a

) This Butsa &

{ number, N,
into i
7 location ALy |

8,
short program like the one above to poke
several numbers into a series of locations in
user RAM.

The numbers you poke must be between
0 and 258, the highest number than canbe
represented with eight binary digits (one
byte of computer code).

*Some computers use different commands, e.g. the BBC uses a ? mark, Check your manual.

What the numbers mean

When you tell the computer to print the
contents of a memory location on the
screen, the result is always a decimal
number from 0 to 255. This is because each
memory location can hold one byte, and the
highest value that can be represented with
eight binary digits is 255. There are only 256
(0to 255) possible different bytes of
computer code and each byte can have
several different meanings for the
computer.

For example, the binary number
00110000 (decimal 48) could be the code for
one of the instructions in the instruction set,
for aletter on the keyboard, or for part of
the address of another memory location
(each address consists of two bytes).

Typeinthe address for
yourcomputer's
operating system.-=

Look in your manual to find the addressin
ROM of your computer’s operating system
and then try this program. The numbers
which appear onthe screen are the decimal
equivalents of byies of machine code from
one of the programs in the operating
system.

Usean address
inyour
computer’'s

computer, then try poking numbers into
screen memory locations. You do not need
touse PRINT PEEK because bytes stored in
the screen memory are automatically
displayed on the screen. Thistime the
computer interprets the number asthe
code for a character.*

Putanaddressin
yourcomputer'’s
screenmemory
here.

10 LET J=scrpen
address

20 LET C=33
=0 FOKE J,C
40 LET J=J+1
S50 LEY E£=C+1
&0 IF C<=125 THEN GOTO 30
70 STOF

Try a short program like the one above to
print your computer’s character set. The
program uses ASCII codes, starting with 33,
the code for !, and ending with code 0.
QOther numbers in the range 0-255 are for
special keys such as SPACE and DELETE,
for printing the alphabet in inverse or
flashing characters, and for graphics
characters.

address, ';0‘

Thisisthe

(pronounced “askey™), to decide which
numbers represent which characters, but
some, such as the ZX81 (Timex 1000) use
different numbers. The VIC 20 has a special
set of numbers, called screen codes, for
characters to be displayed on the screen.
There should be a list of your computer’s
character codes in your manual.

MM MMM MNMNM MM NMMANHNHN AR NN ENNNAN
AL GRS TSRS T A S e e S B 8 6
HM N MM HN NN MMM NN N H NN H MMM NN
HMEEMMHA NN NM NN NN E NN R NN AR

. Location 1120.
Firstlocation in screen memory.

On most computers you can printa

character in a particular position on the

screen by working out the address of the

location for that position. For example, ifthe
screen memory starts at location 1024 and

the computer can print 32 charactersona

line, the address for the first position onthe

fourth line will be 1024+(32 x 3) whichis

1120. (Address 1024 is counted as zero.) 13

*On the Spectrum (Timex 2000) the information for each position on the screen is stored in several
different memory locations and you cannot print characters by poking codes into the screen memory.

Inside the CPU

Allthe computer's work isdone by
fetching bytes of instructions and data
from the memory, then carrying out the
nstructions in the CPU.

There are three main areas inside the
CPU: the registers where bytes ofdata
are held while they are processed,; the
ALU, or arithmetic/logic unit where
bytes can be added, subtracted or
compared; and the control unit which
organizesall these activities.

The arrangement of the registers in
the Z80 and 6502 chipsis different, as
shown in the pictures below.

Fetch a byte

bytes. fromthe

memory

L.) andputit
) [inthe

¢ "\ registers.

the sort of
instructions
the CPU can
carry out.

These pictures show the sort of instructions
which the CPU can carry out. They are all
very simple. It can fetch bytes fromthe
memory and put them in the registers, move
bytes from one register to another, process
them in the ALU and store the resultsinthe
memory. Even the simplest task, such as

o (-
L [Jumpto

Transfera
!g byte from one
\ registerto

instruction 6. another.

adding two numbers and dmplaymg the
result on the screen, involves overa
hundred simple steps like these and the
CPU can carry out over half a million each
second.

For each operation the control unit
fetches an instruction byte from the ROM or

_ "Flip the bits",

[thatis, make /
| allthe1sinto]|

\ Osandallthe
{ Osinto1s.

\ Moveallthe —
bits one place
3 totheright. }

RAM loads adata byte into the registers

and then performs the operation specified
by the instruction. In machine code, you can
tell the CPU what to do with the bytesinthe
registers, but the ALU and control unit carry
out their work automatically and you cannot
tell them what to do.

The Z80 registers
The main difference between the Z80 and the 6502 chips is that the Z80 has more registers.
This means that bytes can be stored temporarily in the CPU, whereas in the 6502 they haveto
be sent back to the memory.

A stands for “accumulator”. Fisthe “flagsregister”. It holdseight IXandIY arecalled

Itis the most important bits but only six of them are used. “index registers”.
register inthe CPU and Eachbit acts as a signal. For They can each hold
stores bytesontheirwayto example, the carry flagissetto 1 16 bits and they are
and from the arithmetic/ when an answer is greater than 255 used in certain
logic unit. It can only hold and will not fit in one byte and the instructions to work
one byte atatime. sign flag shows whether anumberis outthe addressofa
byte in the memory.

positive or negative.

PCisthe “program counter".
Itisa 16-bit register and it
holds the address of the next
fromthe memory. Eachcanhold addressofthelastitemin byte to be fetched fromthe

SP stands for “stack
pointer”. Itis a 16-bit
register and stores the

B,C,D,E,Hand L are general

purpose registers where bytes
can be stored on their way to or
the machine stack —the

only one byte but they canbe memory. The number inthe

The 6502 registers

The main registers in the 6502 are the same as those in the Z80, but some of them are called

by different names.

A isthe "accumulator”
where bytes are stored on

P stands for “processor
status register” and it has

their way to and fromthe
ALU. Itisthe same asthe
accumulator in the Z80 and

the same function as the
flags register in the Z80. It
contains eight bits, seven of

can hold only one byte.

Xand Y are “index

which are used. Each bit is
setto 1 torecord a certain
condition, such as whethera

registers”. They are used in
certain instructions to work
out the address of a byte of

number is positive or
negative.

data. They canalso be used
as general purpose

registers to hold bytes
temporarily.

Thisisthe

PCisthe
“program
counter” and it
works in the

ninth bit of
the stack
pointer
(register S).

same way asthe
PCregisterin
the Z80.

Sisthe “stack pointer”. It stores the address of the last item onthe
stack — the special area in the RAM where the CPU stores data. Inthe
6502 the stack pointer is an eight-bit register. In order tostore
addresses a ninth bit kept permanently at 1 is wired up to the S
register. This represents the page number of the address, so inthe
6502, the stack is always in page one of the memory. The numberin

grouped together in pairs, e.g. place where the CPU program counter increases
14 BC,DE or HL to hold two bytes. stores temporary data. by one eachtime an
instruction is carried out.

the stack pointer gives the position on the page.

15

Giving the CPU instructions

A program in machine code consists
ofalist of instructions telling the CPU
exactly what to do with bytesinthe
registers. You can use only the
Instructions that the CPU
understands, so for computers witha
280 or Z80A microprocessor you
must use instructions from the Z80
instruction set and for computers
witha 6502, 6502A or 6510
microprocessor, you must use 6502
instructions. There isa listof Z80and
6502 instructions at the back ofthis
book.

Most machine code instructions consist of
two parts: an “opcode” and an “operand”.
The opcode tells the CPU what to do and the
operand tells it where to find the datato
work on. (The word operand means “object
on which an operation is performed”.) Each
opcode is an instruction from the instruction
set.

These are mnemonics.

These are hex codes.

. \ o/
Mnemonics are much easier to

short words which represent what they do— understand then hex, but you cannot type
or as the hex equivalents of the computer's theminto your computer unless you have an
binary code for each instruction. For assembler (a program which translates the
example, LD A on the Z80 and LDA onthe mnemonics into the computer's own

6502 are the mnemonics for “load abyteinto code).* Most people write machine code
the accumulator”. The same opcodesinhex programs in mnemonics and then translate
are 3E for the Z80 and A9 for the 6502. them to hex.

Z80

Here are two machine code instructions in sign to indicate hex numbers). Numbers are
mnemonics, one forthe Z80 and one forthe always written in hex in machine code. On
6502. They both tell the computer toload the the 6502 a number is preceded by a #
number 05 hex into the accumulator (&isthe (hash) sign to show that it is a piece of data.

*You can find out about assemblers on page 40.

A simple program

Here are two programs, one for the Z80 and one for the 6502, which tell the CPU to add two
numbers. They are both written in mnemonics. Strictly speaking, a program in mnemonics
is called an assembly language program and one which uses hex codes is called machine
code. Over the page you can find out how to translate the programs to machine code, and
on the next few pages, how to load and run the version for your computer.

The Z80 and 6502 programs follow the same steps, although the actual instructionsare
different.* In the 6502, data on which calculations are to be carried out must alwaysbe
placed in the accumulator. In the Z80 it is placed in the accumulator, or for big numbers, in
register pair HL.

accumulator and store the resultinthe
number into the accumnulator. Thenyouadd memory. The mnemonic opcodes for these

To add two numbers you load the first

the second number to the one inthe instructions are given below.

Opcodes and
} operands forthe
Z80 are separated
by commas.

Z80 mnemonics

Meaning

Load A with a number. A stands for “accumulator”
LD A, number and LD is short for “load”.

ADD A, number | AddtoA (theaccumulator),anumber.

LD (address), A —T Load a certain address with the contents of A (the accumulator).
i i Addresses are always written in brackets.

6502 mnemonics | Meaning

Load A with a number. A stands for “accumulator” and LD is short for
“load".

LDA number

ADC is the mnemonic for the instruction “add with carry”. It tells the)
ADC number . computer to add a number to the accumulator and to set the carry flag in
the flags register if necessary. You can find out more about this on page 29.

Store A (i.e. the contents of the accumulator) at a certain address. ST is

STAaddress short for “store” and A stands for “accumulator”.
. This program uses ignindi
Z80 adding three opcodes: LD A, tThhaet ii‘%;éTSA%aff Z
program ADDA, and piece of data.
LD A,&02 LD {address, A,
ADD A, &04 »
' Data
LD (&7F57), A
: ™ Addres

7

Now you can fill in the data and addresses. and 4 decimal), and storing the result in
Inthese examples the programs areadding memory location 7F57 hex.
2 hex and 4 hex (which are the same as 2 17

*From now or, if you have a Z80 you can skip over the 6502 programs and if your computer uses 6502
instructions, ignore the Z80 programs.

Translating a program into hex

The only way to translate the mnemonics into hex codes is to look upeach
mnemonic ina chart. There isa chart of mnemonics and hex codes at the back ofthis
book. You have to be careful, though, as there are several different hex codesfor
each instruction depending on whether the operand is a piece of data, an addressor
the name of a register. For example, here are some different versions of the
opcodes for loading the accumulator, and their hexcodes.

this book includes all the instructions
covered in this book. If you want to write
more advanced programs you will need to
get a complete list of Z80 or 6502 codesand
there are some suggested books on page 40,

When the operand is a piece of data itis
called “immediate addressing”. When itis
the address where the data is stored itis
called “absolute addressing”. The list of
mnemonics and hex codes at the back of

Here are the hex codes forthe Z80and 6502 code and those in hex are called object
adding programs. Instructions in code.
mnemonics are sometimes called source

Now you can fill in the data and addresses.
This is quite straightforward — except for
the addresses. In machine code you haveto
reverse the order of the two pairs of digits
which make up an address. You can find out
18 more about this on the opposite page.

You haveto reverse
the two pairs of digits
inan address, like this.

You leave outthe &
and # signsinthe hex
code version.

More about hex codes

Machine code programs are written in hex rather than decimal numbers because the
binary numbers used in the computer’s own code translate more neatly to hex than
decimal.

—

E — e

For example, the highest address you can number that can be represented by one
have with sixteen binary digits is 65535 in byte (eight binary digits) is 255 decimaland
decimal and FFFF in hex and the highest FF hex.*

STA)
r : f Hlx
Mnemonic code

though, take up two bytes so they need two
instruction set are one byte long, soin hex pairs of hex digits.

eachopcode is two digits. Addresses,

byte 7' = Low order byte

(one page = 256 memory locations).
Because of the way the CPU handles
addresses you must always give it the low
order byte (position on page) first, followed
by the high order byte (page number).

order byte and it is the page number inthe
memory on which the address islocated
(see page 10). The second pair of digits is
called the low order byte and it isthe
position of the memory location on the page

*You can find out how to convert binary numbers to decimal on page 28.

19

20

Finding free RAM

There are several things to do before you can load and run the adding pregramon
page 18. First you need to choose an area in the memory in whichto storethe
program. When you type ina BASIC program, the BASIC interpreter automatically
stores your program in user RAM. When you give the computer a machine code
program, you bypass the interpreter so you have to tell the computer whereto
store the program. .

Youneed to choose an area in the RAM where your machine code will not
interfere with any other information stored in the memory, For instance, youmust
not store machine code in the areas reserved for use by the operating system, such
as the systems variables or the stacks. If youdo the system will probably crashas
your machine code will have replaced vital information which the computer needs
to organize all its work. You also have to be careful to keep your machine code
separate from any BASIC program youmay give the computer at the same time. If
the computer crashes the only way to restore itisto switch itoffand on againand

you will lose your program.

*, Each memory
location holds

It is quite easy to work out the length ofa Most machine code programs are quite
machine code program — you just countup short and to start with a hundred bytes of
the number of pairs of hex digits (eachpair =~ memory space will probably be plenty for
takes up one byte). For example, theadding your machine code programs.

program has seven bytes.

Finding free RAM

The normal place to store machine code
programs is at the top of user RAM, the
place where BASIC programs are
stored. You have to make sure, though,
that the machine code will not get mixed
up with any BASIC programs. To avoid
this you can lower the top of the user
RAM area. This makes a “no-man’s land”
above user RAM which the computer
will not use until you tell it to when you
load your machine code program.

The top of user RAM is called
RAMTOP, or HIMEM, or just top of
memory. You can find out how to lower
RAMTOP onthe opposite page.

Lowering the top of user RAM

The computer keeps arecord of the address of RAMTOP in the systems variables and you
can change RAMTOP by changing the address stored in the systems variables. The
instructions for doing this vary on different computers, but most follow the principles given
below. You should check how to change the top of RAM in your manual though, as your
computer may use different instructions, or may even have an easier way to make space
for machine code. : "

i | L | | b e 2
The address of RAMTOP takes up two
consecutive locations in the systems
variables, one for the page number of the
location and one for the position onthe
page. Look up the addresses of these
systems variables locations in your manual
(they may be listed as RAMTOP, HIMEM, or

‘1

the two bytes of the address inreverse
order —first the position on the page, then
the page number, so the first location inthe
systems variables holds the position
number and the second, the page.

PRINT PEEK (address 1) +FPEEK
{address 2)%254

- 4

You canuse PRINT PEEK (or your This command automatically converts the
computer’s cormmand) like this to peekinto two bytes of the RAMTOP address intoa
the systems variables and print out the decimal address by multiplying the page
address of RAMTOP. Fill in the addresses number by 256, then adding the position on

of your systems variables. the page.
CLEAR ramtop address — 100 ‘, A)
= 7]
=) b
\Specnum X 5
? o5 ? NEW NAL
HIMEM ramtop address 1l.’..!0 R AMTOP\
2 Oric ; '

machine code as shown above left. Check
your computer’'s command in your manual.
These commands lower the top of user
RAM by 100 locations and so reserve an
area of 99 bytes for machine code starting at

Most computers have their own special
command for changing the address of the
top of user RAM. For instance, forthe
Spectrum (Timex 2000) the command is
CLEAR and for the Oric it is HIMEM. These
commands are followed by the address of the address after RAMTOP. Youcan

the top of user RAM minus the number of change the figure 100 to reserve more space.
bytes of memory you wish to reserve for 21

*See over the page for how to lower the top of RAM on the VIC 20, and where to store machine code
onthe ZX81 (Timex 1000).

VIC 20 tip

The VIC 20 has no special command for
changing the address stored inthe
systems variables. Here are the
instructions for lowering the address of
the top of user RAM on the VIC.

e) g -

= _
=S yeTeEms /7 Al
- VARIABLES ’- -
J - ﬂaﬂulwuam Al

The address is held in systems variables
55and 56. Remember, the second
location holds the page number.

| POKE. 86, FPEEE (5611 ‘

To lower the top of user RAM by 256
locations, i.e. one page, use the direct
command shown above. This makes the
computer peek into location 56 (the one
which holds the page number). It
subtracts 1 from the value held there and
then pokes the new value back into
location 586. In other words, it reduces the
page number part of the address by 1. To
see the new address of the top of user
RAM type this command:

PRINT PEEK(55)-+ PEEK(56)* 256.

ZX81 tip

Onthe ZX81 the best place to store
machine code programsis atthe
beginning of user RAM. To do this you
type a REM statement as the first line of
the hex loader program given on page
24 and fill it with as many digits asthere
are bytes in your machine code
program.

. 5 REM 1234547
¥~ Seven bytes

Each of the digits in the REM statement
takes up one location in the memory.
Now you can poke your bytes of
machine code into the locations
reserved by the digits in the REM

statement. Thefirst byte
of machine
code will be
storedin

=\ location 16514,

User RAM
starts at
location
16509.

To do this you need to know the address
where the first digit is stored. User RAM
starts at location 16509 and the computer
needs two bytes to hold the REM line
number, one for REM, one for NEWLINE
and one torecord the length of theline,

so the first digit is in location 16514.

Other places to store

machine code

There are a few other places inthe
memory where you can store machine
code, if you are not using them. For
instance, if you are not planning on
saving your program, you canstore itin
the cassette buffer, or if you are not
creating any user-defined graphics, you

~ could store it in the area set aside for this.
- Look in your manual to find the ,
. addresses of these areas inthe RAM.

Your manual may also suggest suitable
places in your computer’s memory for
storing machine code. You should look
out, too, for tips in magazines and books.

Cassette
buffer

User defined
graphicsarea.

Loading and running a program

The next few pages show you how to load and run the adding program on page 18,
To give the computer a machine code program you have to poke each byte intothe
area of memory that you have chosen for storing machine code (e.g. above
RAMTOP). On most computers you can only poke decimal numbers so you usea
short BASIC program called a "hex loader” to do this for you. The hexloader
converts each byte of machine code tc a decimal number, then pokes it into the
memory. There isa hex loader program over the page. First, though, youneedto
change the address for the answer to the adding program, to an addresssuitable
for your computer. There isalso one more instruction (see below) you must add to

the program.

Choosing an address for the answer

Data produced by a machine code
prograim, such as the answer to the sumin
the adding program, is called “data bytes”.
It is important to store data bytes where

they will not get mixed up with the program
itself. The best place isright at the
beginning of the area you have reserved for
machine code, in front of the program.

=B

For example, if you have lowered the top of
user RAM to, say, location 16000, the first
address of the area for machine code will
be locatlon 16001 Thisis where you Would

To convert the address to hex you divide by
256. The answer is the decimal page
number and the remainder is the position
onthe page (see page 11).

The return instruction

4§.— ! 0?’
. i

| =
store the data byte and the program would
start in location 16002. You will need to
convert the address for the data byte to hex
soyou can insert it in the program.

Address
16001is T
3E81inhex. ¢

To convert these to hex youdivide by 16
and then convert the answers and
remainders to hex digits as shownabove.

Z80 mnemonics Hex codes
LD A, &02 8E, 02
ADD A, &04 C6,04

32.577F

. 6502 Mnemonics Hex codes
LDA #&02 A902
ADC #&04 6904
STA &7F57 8D567 7F

Atthe end of every machine code program
you must always have the instruction RET
(for the Z80) or RTS (for the 6502). This
makes the computer stop running the
machine code program and return to where

it left off, Without this command, the

computer would carry on attempting to

follow an instruction for every byte it found

in the memory and the system would soon

crash.* 23

*There is more about the return instruction on page 35.

m-.ﬂﬂﬂﬂﬂ-ﬂﬂnﬂ c Iﬂﬂ-
[49]50[51]52[53] 54[55] 66]57] 65] 66]

Decimal

value of
hex code

imal 48
X 16:=48 4 +
162 3Eis62.

nnnnnnn-nnmmmm‘

Using the loader

Now you can use the hex loader to try out the machine code adding program. This is nota
very exciting program, but it is simple and it shows you how machine code works. Typethe
hex loader into your computer. At line 160, replace the sample data with the hex codes for

the adding program, as shown below.
Data for the hexloader
Replace b and hb with the two

bytes ofthe address forthe
answer,

160 DATA 3E,02,Cé,04,32,

These are the hex codes for the adding
program. You need io replace the letters1b
(low order byte) and hb (high order byte),
with the two bytes of the address wherethe

Running the hex loader

Now type RUN to run the hex loader
program. When it asks you for the address,
type in the first location after the one where

ENDsignal
to computer.

1b,hb,C9,END

answer will be stored in your computer.
Remember to put the bytes inreverse
order, i.e. low order byte (position on page)
followed by high order byte (page number).

you are storing the answer. Type this
address asa decimal number as it willbe
used with the POKE command.

Running the machine code program

These are some of the
commands used on
different computers.

The command to tell the computer to start
running a machine code program varies on
different computers. Some use CALL,
othersuse PRINT USR or SYS with the
decimal address of the location where the

first byte of the program is stored. Check
this command in your manual. Whenthe
computer receives this command it goesto
the address and starts carrying out the
machine code instructions.

Seeing the result

PRINT PEEK(16001)

I‘ PRINT PEEK(16001)
-]

The computer carries out the machinecode have to use PRINT PEEK with the address of

instructions and stores the answer inthe the answer. The result will be the answerin
location you told it to. To see the result you decimal.

Programs to write
Younow know enough machine code to write some simple programs. There isa
checklist at the bottom of the page to help you remember all the things you have todo
when you write a machine code program. Answers page 44.
1. Try writing a program to add 25 and 73 &

(decimal) and store the result inthe '
Memory.

2. See if you can write a program toadd
64 and 12 and 14 (decimal) and store the
result in the memory.

T~

The adding program will only add
numbers which total less than 255.
On page 28 you can find out how to
add larger numbers.

Machine code checklist

1. Write your program in assembly
language and convert any data to hex.

2. Look up the hex code for each of the
mnemonics (there is a list of the
mnemonics and hex codes at the back of

6. Fill in the addresses in the program —
remember to put the two bytes inreverse
order. (See pages 18-19.)

Before running the hex
checkthe hex codes in
very carefully.

Don‘tforget to put END afteryour

listof hex codes in the hex loader. 1, Type inthe hex loader (you could save

this program on tape) and fill in the hex

codesinline 160 followed by the END
signal. (See page 24.)

3. Add the return instruction to the end of =

the program. (See page 23.) &L=

4. Count up the number of bytesand
reserve your free RAM area. (See pages
20-22.) B

8. Run the hex loader and input the
decimal address of the first location
where you wish to store the machine

Make a note of the addresses of
data bytes and of the address
where you haye storedthe

program. code. (See page 25.)

9. Run the machine code program using
your computer's command with the
address (in decimal) of the first location
where the machine code is stored. (See
page 25.)

If you change the data in the hex
loaderyou havetorunthe
rogram again to poke the new
ytes into the memory.

5. Work out what memory locations you
need for data bytes and convert the
26 addressestohex. (See page23.)

Adding bytes from memory

In the previous program the data was included in the program itself. Thisiscalled
immediate addressing. Sometimes, though, you may want to tell the computer to
do something with data stored inits memory. In this case, the operand part ofan
instruction will be an address telling the computer where to find the data. Thisis

called absoclute (or direct, or extended) addressing.
: Absolute

These are just two of the several different modes”. There is a different hex code for
ways in which you cantell the computer each instruction depending on the
where to find the data to work on. The addressing mode you are using.
different ways are called “addressing

Immediate
addressing

Program to add numbers from the memory

Here is a program to add two numbers stored in the memory. Compare the hex codes for
the instructions in this program, which uses absolute addressing, with those forthe
previous adding program which used immediate addressing.

Z80 program

Mnemonics Hex codes Meaning

LD A,(address1) 3A, address 1 Put the number in address 1 into the accumulator.
LD B,A 47 Put the number in the accumulator into register B.
LD A,(address?2) 3A, address 2 Put the number in address 2 into the accumulator.
ADD AB 80 Add the number in register B to the accumulator.
LD {address 3), A 32, address 3 Store the contents of the accumulator in address 3.
RET C9 Return

To add two numbers from memory you straight from the memory, though, so you

have to load them into the registersfirst. For have to put the first number into A and then
this you can use the accumulator (A)and
register B. You cannot load register B

transferittoB.

Running the program

To run this program, follow the steps given in the checklist on the opposite page. First,
though, you will need to poke into the memory the two numbers to be added. Youshould
choose memory locations at the beginning of the area you have cleared for machine code, to
keep these data bytes separate from the instructions. Then convert the addresses to hexand
insert them in the program. You need a third address for the answer. To see the result, type
PRINT PEEK(address 3).

Working with big numbers

The programs on the previous few pages only work with numbers which add upto
255 or less. This is the highest number that you can represent with the eight bitsin
one register or memory location. To work with larger numbers youneed to knowa
little more about the binary number system, and how to use the carry flag. Overthe
page there is a machine code program to add larger numbers,

Binary numbers '

The binary number system works like hex and decimal numbers except that there are only
two digits, 0 and 1. To make numbers bigger than 1 you use several digits and the value of
each digit depends on its position in the number.

The carry flag

The carry flag is a single bit in the flags
reqgister (also called the processor
status register), which is usedio
indicate when the answer to a sumis
greater than 255 and will not fit into one
byte (eight bits). Whenever this
happens the computer automatically
putsa 1 inthe carry flag, Thisiscalled
setting the carry flag and making it 01s
called clearingit.

You can think of the carry flag as a ninth bit
indicating that a binary 1 has beencarried
over from column eight of a number. For
example, look at the sum 164 + 240

0os | _307; 21214; 759: 1023,

Canyouconverttheseto
decimal? (Answer page
44,)

X128 x64 x32 X16 %8 x4 x2 x1 X128 x64 x32 x16 %8 x4 x2 x1

0+ 0432+ 0+8+4+2+0 128 + 0+ 04+ 0+0+4+2+1
=46 =135

11111011 |

Here are some more examples which show how you 10 1'0\1 010 |

convert binary numbers to decimal.

Giving the computer big numbers

Inside the computer, numbers over 286 are stored in two bytes, called the “high orderbyte”
and the “low order byte”, just like addresses. The high order byte shows how many 256s
there are in the number and the low order byte is the remainder. As with addresses, the
computer always deals with the low order byte before the high order byte and you haveto
store them in that order in the memory.

Number over 255
o

12420 - 256 = 48 remainder 132
High order byte

/—t-
m/ Low order byte 132

To give the computer a number over 255
you have to work out the value for each
byte. To do this you divide the number by
256. The answer is the decimal value of the
high order byte. The remainder is the low
order byte.

If you want to use the number as dataina
machine code program you have to convert
each byte to hex. To do this, divide each
byte by 16, then convert the answersand
remainders to hex digits as described on
page 11.

What are the decimal high order and
low order bytes for these numbers?

Andwhataretheyin hex? (Answers

on page 44.)

“‘(-'1' = ——ropr 1 T 11111111 binary (10100100+11110000 in binary), below.

2 AR 3 Bl i [BTacss, AN T is 255 decimal. _ = ~

| ETRane oy _ . e = *"'__1 - Br Decimal carrr<_ Binary Toadd binary numbers you carryh‘l

X128 x84 x32 x16 x8 x4 x2 x1 L 1286432168421 ??Sé‘t‘é?fé’u“é’é“iL“Q%Sf%'il?é’é?ﬁo?”
E... I tot han 9.
128 +64 + 32 + 16 + 8 + 4 + 2 + 1 =255 - +;§3 Tg},f“h.,.] ? 1 ?8833‘ T olumn toteiemers than
- . . 3 . < LA 1

Inabinary number, each digit hastwice the third, the number of fours; the fourth the 204 \«11 0.0 10

t}}e yalue ofthe digit on itsright. Thefirst number of eights and so on, as shown above. J : 180

digit (the one on the right) shows how To converta binary number to decimal you The answer to this sumis 404 which takes the computer it would be represented by

many ones there are inthe number. The multiply each digit by the value of its position up nine bits in binary. The ninth bit shows the bit in the carry flag

second digit shows the number oftwos; inthe number and add up theanswers. how many 256s I e In '

Carrying in the Z80

The Z80 has two different adding
instructions: ADD and ADC, ADD tells the
computer to add two numbers but toignore
any carry over from previous calculations.
If the calculation results in a carry over, the
computer will set the carry flagand ifthere
is no carry it will make the carry flag 0.

ADC stands for “add with carry” and it
tells the computer to add two numbers plus
the carry flag, and to set or clear the carry
flag depending on the result. If youare
doing a series of calculations it is best touse
the ADD instruction for the first sum to make
sure you do not include a carry left over
froma previous operation, and then touse
ADCin case there was a carry from the first
calculation.

S —) I |

the page.

(Youcanseehowthe
(carryflagworksin
~ the program over

The 6502 has only one adding instruction,
ADC, soit always includes the contents of
the carry flag in calculations. Because of this

itis important to clear the carry flag using

the instruction CLC (clear carry flag) before

youdo any additions.

29

Big number programs Checking the carry flag % ‘

Before you can run the programs on these two pages you need to work out thehigh
and low byte for each of the numbers you want to add and poke them into the
memory. For example, say you want to add 307 and 764.

High order Low order

. High = = S :
First number: 307 orger Lines 5-7of the ZSO program are for accumulator (Eth line), then add 0 usingthe
307 = 256 = 1 remainder 51 byte checking the carry flag. Youcannotloadthe add with carry instruction. If the carry flag
contents of the carry flag straight into a was set by the previous calculation the
Second number: 764 register, or into the memory. The only way accumulator will now contain 1 (fromthe
. . ; to seeifit has been set is to do another carry flag) and this is stored in address Z
B0 EEG= SR AR Ay addition. To do this you put 0 intothe (Tthline).
Loworder Highorder
T Y] 3

‘ 6502 big number program _
Here is the program for adding numbers greater than 255 on the 6502. Before you run ityou
need to work out the high order and low order bytes for the two numbers and pokethem

| into the memory as described on the opposite page.

|
Next you need to poke these bytesinto bytes for the first number are stored in !
memory locations at the beginning of the locations W and W1 and the bytes for the
area you have reserved for machine code. second number are inlocations X and X 1.
For each number, the low order byte must Youneed three locations, Y, Y1 and Z for the
be in the first location, followed by the high answer (one for the low order byte, one for
order byte. In the picture above, the two the high order byte and one for a possible
5 carry).
Z80 big number program
Adding the two numbers on the Z80 is quite easy as you can use the registers in pairs, with

each pair holding the two bytes for one number, You can use the H and L registers asone

pair and the B and C registers as another. When they are used like this they are referredto

as HL and BC. When you are not using the accumulator you use the HL registers foradding. |
Here are the mnemonics and hex codes for the program. It may help you to look at the ‘
picture at the top of the page when you study this program. ‘

Mnemonics Hex codes Meaning First the program Then it puts the low order byte of the first Ifthe result is greater
LD HL,(addressW) | 2A, addressW Puts byte from address W (low order byte of clearsthe carry flag number into the accumulatorandadds than 255 it setsthe
first number) into register L and byte from incaseitwassetby withcarry the low order byte ofthe carry flag.

?ggr;:f IYIV 1(high orderbyte, first number) into apreviousoperation. second number (2nd and 3rd lines).

LD BC,(addressX) | ED4B,addressX Puts byte from address X (low order byte, |

' | second number) into register C and byte from

_ Thisopcodeis | addressX1 (high order byte, second number)
twobyteslong. | intoregister B.

Adds contents of HL and BC and 1 sult i ; ; : :
ADD HL,BC 09 HL. It 3325% :dd matlﬁe car?;l ﬂagﬂisitr goes .l_:;t It stores the result in location Y (4th line). Then it adds the two Lines 8-10 check to
the carry flag if necessary. high order bytes and the carry (if there was one) fromthe seeifthe carry flag
Stores low order byte of answer in address previous sum. It stores the result in location Y1 (7thline). was set using the same
LD (address Y), HL 22,address Y ¥ and high arder Byte inaddress Y1. | A e P P——
LD A, &0 3E,0 See opposite page for how the See opposite for The resglt is stored as three bytes. The low e t°p GHR PRGS
ADC A, &0 CE,0 computer checksthe carryflag. | howtodisplay] ion) sh h y ey 3 ‘
LD (address Z), A 32 addressZ _ the result of order byte (location Y) shows the numbero PEEK (Z) %65536) ,
RET c9 | Retiirm Lth[s prog ram. units. The hlgh order byte (locatlon Yl) s —
- shows the number of 256s. Thistime thecarry | (See lfYO g 7can ahdapt the progra Th
To run the program you need to fill inthe specify one address for each pair. The = (location Z) shows the number of 65536s. To d ?;sg?tgz reastgrt t;’; :1" ggg_cl_?i?‘i";g %
hex addresses for W, X, Y and Z. (Don't computer automatically puts the byte from £¥°°% see the result use the instruction shown onthe | ;

forget to reverse the pairs of digits.) When the next consecutive address into the other SAZ~ right. (Replace Y, Y1 and Z with your
30 youusetheregistersin pairsyouneedonly registerinthe pair. - computer’saddresses.)

L

Displaying a message on the screen

The next program shows you how to use machine code to display a message onthe
screen, The program for the Z80 is on the opposite page and the one for the 6502 ison
page 34. The two programs follow the same basic principles, although the methodis
slightly different for the different microprocessors. *

How the program works
Message

First you poke the character code for each ofthe message you poke inthe code 255asa
letter of your message into locations at the signal to tell the computer this is the end of
beginning of your free RAM area. Each the message.

letter takes up one byte. At the end
Arethey
oo ¢
RAM j

The program loads each byte
of the message into the accumulator

and compares it with 255. If the byte of
message does not equal 255, it stores itin
the screen memory and it is automatically

Comparing things

displayed on the screen. Then the
computer jumps back to the beginning of
the program to find the next byte of the
message inthe memory.

Zeroflag = 1

Youuse the opcode CPonthe Z80and CMP resultis 0, the two bytes are equal and it sets
on the 6502 to tell the computer to compare the zero flag in the flags register to 1. If they

a byte with the one in the accumulator, The are not equal the zero flag is 0. You canthen
computer compares them by subtracting tell the computer io go to another part of the
one fromthe other. (Thisisjustatest,infact, program, or carry onwith the next instruction
the two bytes remain unchanged.) If the depending on whether the zero flagis 1 or 0.

*On the Spectrum (Timex 2000) you will not get a legible message on the screen because of the way the
screen memory is organized.

280 message program

Here are the mnemonics and hex codes for the Z80. Before you run the program, poke your
message into free RAM. Then fillin the addresses in lines 1 and 2 of the program. Thelast
instruction of the program tells the computer to jump back to the third instruction.
Youneed to insert the address where the third instruction will be stored in your computer,
into the last line of the program.

Mnemonics Hex codes

LD HL, screenaddress 2], screen address
LD DE, messageaddress| 11, message address

This is immediate

LD A, (DE) 4 1A the registers.
CP,&FF FE,FF
RET Z C8
LD (HL),A 17 Inindirect addressing the
| INC, DE 13 operand is written in
INC, HL 23 brackets.
JP, address of 3rd \ C3,addressof3rd

instruction instruction

In this program, register pairs HL, and DE are used as pointers to the addresses wherethe
computer should store or fetch data. This is called “indirect addressing”. The instructionsin
the third and sixth lines use indirect addressing.

In the first two lines, the computer puts the screen address (the address where dataisto
be stored) into register pair HL and the message address (the address from which datais
fetched), into register pair DE.

Address of
first byte of message.

LD A, (DE) tells the computer toread the &FF (the hex for 258). RET Ztells the
address in DE and then fetch the byte from computer to return to BASIC if the zeroflag
that address and put it in the accumulator. is 1 (i.e. if the byte equals 255). If the zero
This is indirect addressing. Then it flagis 0, it carries on with the next
compares the byte in the accumulator with instruction.

SCREEN

LD (HL),A also uses indirect addressing. It

increase by one. In the seventh and eighth
tells the computertoread the addressinHL lines the computer adds one tothe

addresses held in DE and HL so that whenit
jumps back to the instruction in the third
line, it fetches the message byte fromthe
next memory location.

and then store the contents of the
accumulator (the message byte) at the
location with that address. INC is the
mnemonic for “increment” and means

addressing —the operand is
the data tobe loaded inio

;

6502 message program

Here are the mnemonics and hex codes for the 6502. Before you run the program youneed
to poke the character codes for your message into free RAM, followed by 255, the signalfor
the end of the message. Then put the address, in hex, of the first location where the
message is stored, in the second line of the program. Put an address in your computer’s
screen memory in the fifth line.

Youalso need to fill in the seventh line with the address where the second instructionin
the program will be stored in your computer. This makes the computer jump backto
repeat the program.

O—O In i
Mnemonics Hex codes théhheeffgor:j}:elsl?r?: !
LDX #&00 A200 figure 07 tells the
LDA message address, X #BD message address computer how
CMP #&FF CI9FF many locations to
BEQ to RTS instruction - FO 07 jumpto reac_h the
STA screenaddress, X 9D screen address RTS instruction.
INX E8
JMP address of 2nd instruction| P 4C address of 2nd instruction
RTS 60

Y registers are added to the operand to give
the address where the datais stored. The
second and fifth lines use indexed addressing.

_~Codes ~ RAM
I teind B B
76 76

o o N 721 | /69

This program uses another addressing
mode, called “indexed addressing”. In
indexed addressing, the contents of the X or

In the first line, the computer puts 0 into the
X register. The second instruction uses
indexed addressing so the computer adds
the contents of the X register to the address

given in the instruction. The result gives it
the address of the data to be loaded into the
accumulator (a byte of message).

————— Sevenbytes

EERECERE

W | — - - O). 1 o [v 1
flagis 1). Inthe hex codesitis followed bya
number telling the computer how many
locations to jump. We want the computer to
branchto RTSif the message byte equals
255 and there are seven bytes betweenthe
branchinstruction and RTS.

CMP in the third line makes the computer
compare the byte in the accumulator with
&FF (hex for 255), the signal for the end of
the message. If they are equal it sets the
zero flagto 1. The next instruction, BEQ,
stands for “branch if equal” (i.e. if the zero

0()’ SCREEN MEMORY
- p >,
7 72 P
£]
0 \ E 722
T — e s . —

the X register. Then it jumps back tothe
second instruction. This time Xis 1, soit
loads the next byte of the message intothe
accumulator and storesit at the next screen
location.

Next, in the fifth line, the programuses
indexed addressing to store the byie inthe
accumulator (the message byte) at the
address given in the instruction plus X.

INX stands for “increment X" and it
makes the computer add 1 to the contents of

Jumping and branching

Making the computer go to an instruction in another part of the program iscalled
branching. There are three different ways of branching: jumps, subroutinesand
conditional branches. In a conditional branch the computer carries out a testand
then branches, or goes on with the next instruction, depending on the result ofthe
test. You can find cut more about conditicnal branches over the page, Jumps justtell
the computer to go to a certain address.

The program counter

The program counter is a special 16-bit register which holds the address of the next
instruction the computer is to carry out. The computer reads the number in the program
counter and then goes to the location with that address to fetch its next instruction. Thenthe
program counter is increased by one so it points to the next memory location.

When you tell the computer to jump or Jump
branchto a certain address, that addressis sequence from that address. The opcodes
put in the program counter and the for a jump on the Z80 and 6502 are shownin
computer then carries out the instructionsin the picture above.

Subroutines

The instruction “CALL address” on the Z80 and “JSR address” (jump to subroutine) onthe
6502, tell the computer to go to a subroutine. This is just like in BASIC and at the end ofthe
subroutine you need the return instruction (RET on the Z80 and RTS on the 6502).

instruction after CALL or JSR) are stored or
“pushed” on the stack. The stack is a special
part of RAM set aside for the computer'suse
(see page 10).

When you tell the computerto gotoa
subroutine, the address of the subroutine is
put in the program counter. The contents of
the program counter (the address of the

When the computer reaches the RTSor RET Thisis the address of the instruction after
instruction at the end of the subroutine, it the one which sent it to the subroutine. This
retrieves, or “pops”, the last item off the is also what happens when youtellthe

stack and puts it in the program counter. computer to run a machine code program. 35

Conditional branches

In a conditional branch the computer tests one of the bits in the flags register and then,
depending on the result, either branches or carries on with the next instruction. Here arethe
bits in the flag register which you can test in conditional branches.

Working out the displacement

When you give the computer a displacement number in a conditional branch, the
computer works out the address of the instruction it is to jump to by adding or subtracting
the displacement from the program counter.

Rememberto count
two bytes foran address.

To work out the displacement, countthe

number of bytes up to and including the instruction you want to jump to. Start atthe
E i A A E p ‘ instruction after the conditional branch and count that as 0 (because the program counter ==
NorS aQ 00 c will already point to that instruction). For example, here are two short 6502 programs l -f‘
) = = which show how you work out the displacement. (The method is the same for the Z80.) ti"'g
b D Al LDA address ~ i—i" ‘
isi CMP #&FF :
Z Thisisthe zero BNE toRTS
flaganditissetto 1 (STA address
iftwo pieces of data
are equal. RTS LDA CMPA FF Y [BNEY| O3 Hf STAY Lb
. NI N| To make the computer jump to the RTS In the example below, the displacement
NorS Y orP/V THE e e = instruction in the example above, the to make the computer jump back tothe
or S This is the sign or is is called the overflow bit on the 6502. This is the carry displacement is 3. i ionis —
bit It isreferredtoasN On the Z80 it has two functions and is called the flag. Itis setto 1 P - ADGinstrustion 8—6. -
onthe6502and Sonthe parity/overflow. As anoverflow bititissetto lwhen when the answerto LDA £&00
Z80.Itis setto 1 when the result of a calculation in two's complement asum will not fit in ADC #8&01
theresult ofa notation (see opposite) results ina carry overtothe onebyte. (CMP #&FF 3
calculationisnegative signbit. BNE to ADC _Co;mt ttljus
and 0 for positive Asaparity bititis setto 1 if there is an odd number RTS = _Instruction =
results. of ones ina byte and is used for checking purposes. as0. LDA 0o ADC {{ O anetl Fr ohe o e
Various instructions in addition to the on the 6502 the instruction DEC Forwards and backwards jumps
compare instruction cause these flagstobe (decrement) affects the sign and zero For forwards jumps you just translate the displacement into a hex number and insert it inthe
automatically set or cleared. For example, flags.* program. For backwards jumps, though, the displacement is a negative number and thereis

no way of indicating negative numbers in eight bit binary. Instead, you use a different system
of notation called “two’s complement”. In two’s complement, the left-hand bit isused asa
sign bit, If this bit is 1 the number is negative. If it is 0 it is a positive number.

Conditional branch opcodes
Here are the conditional branch instructions for testing eachbit.
Z80 6502 '
Jumpif. .. Branchif. . . Two’s complement
¥ L ey there isa carry (C = 1). BES .o thereisacarry (C = 1). 1. Towork out the two's complement ofa
JPNC............nocarry (C = 0) BECHE s Il = no carry (C = 0) number, say 6 (the displacement for the
) |l T R equal(Z=1) BECY o equal (Z=1) program above), first write downthe
RNE e notequal (Z=0) BNE & o not equal(Z=0) number in binary.
jf,:gl rriinu(ss(s 3)1) ggﬂ:.................ﬂ;ﬂl\.‘l(slq(N '—0')1) 2 Thenyou Change allthe Osto 1 and the 1s
................ pug = PPpTTT—— o) 1 - to 0. This is called “flipping the bits” or
IPPD i, parity odd (P/V = 1) g\ég overflow set (V = 1) “eotmlemaRing anf’lfnbgr‘ oot
¥ JPPE ... ot parity even (P/V =0) teesersinennnesOVErflow clear (V = 0) called the "one's
o0 A complement”.
JP C address & 2 Z80 3. Nextadd 1.The Thisisthetwo's
JRNC &05 Jump 8 locations if result is the two's complement of 6.
‘ there isno carry. complement of the
number.
3230 : e 6502 4. Now you need to convert this to hexto
a%rgfe:saifcti e?;nis X Branch 8 locationsif glserzlgtl in m; program. The easiest way to
carry. there isa carry. othis is to divide the number downthe
) | : middle and work out the decimal and then
After the “JP test” instruction onthe Z80you addressing” and the number is called the =3 the hex value of each group of four digits.

give the computer the address of the

instruction you want it to jump to. Onthe

6502 you give the computer a number which

tells it how many locations it has to jump

forwards or backwards to find the
instruction. This is called “relative

* A complete list of your microprocessor’s instruction set will tell you which instructions affect which

flags.

24 85 4s 2s 1s 8 4s 2s 1s

i [s [[N 5 TR H \
=decimal 156 =decimal 10
= hexF = hex A

— |

128s 64s 325 16s 8s 4s 25 1s
30 E6="0. 0 0" BNORE])

IR S R | (5 o 0

Tand 1 make
Ocarry 1.

“displacement”, or “offset”.

The Z80 has an additional conditional
branch instruction, “JR test”, which you use
with a displacement rather than an address.
JR stands for “jump relative” and you can only
test the zero flag and the carry flag withJR.

Sothe hex representation of the two’s
complement of 6is FA and for a backwards
jump you insert this number in the program.
In two's complement, the highest number
you can represent is 128. This is the biggest

backwards displacement you can have.
The biggest forwards displacement is 127,
the highest number you can make with the
eighth binary digit set to 0 to indicaie a

positive number. a7

Canvyou work out the hex forthe two's
complement of 12, 18 and 97 (Answer page 48)

Screen flash program

On these two pages there is a program which swaps twe blocks of display onthe
screen to make a flashing effect. It shows how simple animation works. The
program for the Z80 is given below and the one for the 8502 1s on the opposite page.
Atthe end there are guidelines for running the program for bothmicroprocessors,

280 screen flash
Put very simply, the program swaps the two blocks of the diplay by loading a byte from
each block into the registers, then storing the byte from block b in the screen address for
block a and vice versa.
(g

o T
e P

L:'/V ADDRESS b H
V ADDRE3S Q.

The program uses indirect addressing. The the program repeats, these are the

screen addresses for the first byte of each addresses of the next two bytesineach
block are stored in registers HL and DE. block on the screen.

The computer reads the addressesinthese Register B holds the number of bytes to
registers each time it loads or stores the be swapped. Each time the program

bytes. After swapping two bytesthe repeats, Bis decremented (decreased) by 1
instruction INC (mnemonic for increment) soit acts as a counter. WhenB=0allthe
makesitadd one to HL and DE sothatwhen bytes have been swapped.

Z80 program
n=number of bytes in one block; a=first address of block a; b=first address of block b.

Mnemonics Hexcodes | Meaning (HLholds address
LDB,n 06,n Counter. ? forblockaand

: DE holds address
LD HL, (addressa) 21,addressa| PutaddressofblockainHL.) oot b
LD DE, (addressb) 11,addressb| PutaddressofblockbinDE. .

b 00000000000000000000000000000000

a2 S 2 s s R s R R R R L s Block a

FEREEREERXEEEREFRERRRAFFRFEREERFRER
00000000000000000000000000000000 |51 - 4
000DD0000000ND0000000000000D0000 R

LD C, (HL) 4E Load C with contents of address in HL (indirect addressing).
LD A, (DE) 1A Load A with contents of address in DE (indirect addressing).
LD (HL),A 77 Store contents of accumulator at address in HL (indirect).
LDA.,C 79 Put C (first byte block a) into accumulator.

LD (DE),A 12 Store contents of accumulator at addressin DE.

sl ‘8 Add onetoHLand DE.

INC DE 13

DECB 05 Decrement B, the counter.

LD A, &00 3E, 00 Put 0 in the accumulator

CPB B8 Compare B with contents of the accumulator (0).

If B doesnot equal zero, jump back &F3 locations to load
next bytesinto registers. F3 is hex for two’s complement
of 13 (see page 37).

JR NZ to 4th instruction| 20, F3

RET C9 Return.

Filling in the data and addresses

addressesaandb If youwanttoswap the toptwo
lines of the screen with the next two lines, make
address a the first address of your computer’'s screen
memory. Address b is the address for block a plusthe
number of bytes to be swapped. Convert both
addressestohex.

n (number of charactersin
one block) To find n, multipl
"| the number of charactersin
aline by the number of lines
inone block. Convert to hex.

6502 screen flash

This program swaps the two blocks, byte by byte (i.e. character by character), starting
with the last byte in each block. It loads these bytes into the registers, then stores the byte
from block a in the screen location for block b and vice versa. Then the programis
repeated to swap the next pair of bytes.

HRFEREREEEREREREEREAREREEREEREERNER
EARREREFRERRARRAERERNFXRERBRREN R R

D000000000DDDD00DDODO0000D0D000D

starting address for each block. The
address for each byte. The total number of instruction DEX (decrement X) makes the

It uses indexed addressing to find the

computer subtract 1 from X so that, when
the program repeats, the computer fetches
the next byte back in the display.

bytesin one block isloaded into the X
register. Then, to store or load abyte, the
number in the X register isadded to the

6502 screen flash program

See the bottom of the opposite page for how to work out the values of n,aand b. Then
subtract 1 from a and b so that when the computer adds X it gets the last address ineach
block, rather than the first address of the next line. (Make sure n,aand bare inhex.)

Mnemonics Hex codes | Meaning

LDX #n AZn Load X with the number of bytes in one block.

LDA addressa, X BD addressa| Put contents of location with address a+X into accumulaior.
TAY A8 Transfer contents of accumulator to register Y.

LDA addresshb, X BD addressb| Putcontents of location with address b+X into accumulator.
STAaddressa, X 9D addressa| Store contents of accumulator at addressa+X.

TYA 98 Transfer contents of Y register back to accumulator.

STAaddressb, X 9D addressb| Store contents of accumulator at address b+X.

DEX CA Decrement X. Zero flag is set to 1 when X=0.

: : Branch back &EF locations if X is not equal to 0. EF is the
BiEtoinstnictiontwe | DOEF hex for two's complement of 17 (see page 37).

RTS 60 Return

Loading and running the program for the Z80 or 6502

The best way to run this programis asa 3. Next, add the following lines to the end
“machine code subroutine in the hex ofthe program:

loader, To dothis, follow these steps: 240 CALL address where machine

1. Typeinthehex loade{ and put the hex ;;gE;DE‘R f;‘i'" ?rdn LA

codes for your computer’s 260 NEXT K Change figure 500indelay
microprocessor in line 160. 270 GOTD 240 loop tosuit your computer.

2. Atline 180 youneed two loops to poke 4. Now type RUN to run the program. The
the characters for the display into the hexloader pokes the hex codes into the
screen memory. For example, here are memory, then pokes the display codes
the lines for two rows of *s (code 42) into the screen memory. Line 240 makes |
followed by two rows of 0s (code 48), fora goto the location where the machine ¢
computer with a 40 column screen. program is stored and carry outthe

instructions. By itself, the machine code

180 FOR J=0 TO 79 program only swaps the display once, so
190 FOKE first screen address + J.42 line 270 makes it call the program again
E?g gg?aiao T8, 159 and again to make a flashing effect. You
220 POKE first screen address + J.48 need the delayloop because the machine

230 NEXT J codeis so fast.

00

39

Going further

[f you want to find out more about machine code the best way is to try writing your
own short programs and to test and study programs written by other people. One
good way to use machine code isas a short subroutine to carry out a particular task
ina BASIC program. For instance, machine code is particularly suitable for sorting
data or filling the screen with graphics because it is faster and takes lessmemory
space than BASIC. You can find subroutines for doing things like this inmagazines.
If the subroutines are written specially for your computer you can run themwithout
alteration. If they are written for another make of computer which uses the same
microprocessor you will need to change any addresses in the program for
addresses in the area in your computer's memory that you have chosen tostore

machine code,

Machine code subroutines

Here are the steps you need to follow to use
amachine code subroutine ina BASIC
program,.

1. Make room in the memory for the
machine code by lowering the top of user
RAM (see pages 20-22).

2. Put the codes for the machine code
subroutine into line 160 of the hex loader
program on page 24. (Make sure thereisa
return instruction at the end of the machine
code program.) Add lines to poke inany
data bytesif necessary, then type in and run
the hex loader.)
3. Number your BASIC program using line
numbers starting after those used in the hex
loader. At the point where you want the
computer to carry out the machine code,
put your computer's command for running a
machine code program as aline inthe
BASIC program.

o
This tells the
computer to goto
location 16002 and
carry out the
instructions there.

4, Type the BASIC program into your
computer and then type RUN. The
computer will carry out the BASIC
instructions and when it reaches the line
telling it to run the machine code programit
will go to the address where the machine
code is stored and carry outthe
instructions. The return instruction at the
end of the machine code will send the

! | computer back to the next line inthe BASIC
program.

Using an assembler

Anassembler (a program which enables
youto type in a machine code programin
mnemonics) makes machine code
programming much easier. You can buy
an assembler on cassette for most home
computers and some, such as the BBC,
have a built-in assembler.

With an assembler you cantypein
comments alongside the mnemonics to
remind you what each line does. The
assembler will then display the program
on the screen in hex and mnemonics, with
the addresses where the instructions are
stored and the comments.

The assembler will automatically
reverse the pairs of digits in addresses
and work out the address or displacement
for ajump. Some assemblers allow youto
use symbolic names for data, like
variables in BASIC. A good assembler
also has a debugger to find mistakes and
an editor to help you correct them.

Suggested books

There are lots of books on machine code
specially written for one particular make of
microcomputer. The best way to choose
one is toread the reviews in computer
magazines. You may also find the following
books useful:

Programming the Z80 and Programming
the 6502, both by Rodney Zaks and
published by Sybex. These are very
detailed guides with complete lists of all the
instructions for each microprocessor. They
are not easy to read for beginners, but they
are useful for reference.

VIC 20 Programmer’s Reference Guide
published by Commodore.

6502 Machine Code for Beginnersby A. P.

Stephenson, Newnes Microcomputer Books.

Decimal/hex conversion charts

This chart converts hex numbers from 0 to FF to decimal and vice versa.

Hex to decimal
To convert a hex number to decimal read

Decimal to hex
To convert a decimal number to hex, find

along the row for the first hex digit inyourhex the decimal number inthe chart. Thenread
number and down the column for the second back along the row for the first hex digitand

hex digit. The number where the row and
column meet is the decimal equivalent for
your hex number, e.g. hex Al isdecimal 161.

up the column for the second hex digite.qg.
154is 9A.

Second hex digit

First hex digit

0 1 2 3 4 5 6

7 8 9 A B C D E F

240 | 241 | 242 | 243 | 244 | 245 | 246

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 i 18 19 20 21 22 23 24 | 25 26 27 28 29 30 31
2 32 | 33| 34| 35| 36 37 38 39 40 | 41 42 43 44 | 45| 46 | 47
3 48 | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 | 65 66 67 68 69 70 71 72 | 73 741 75 76 | 77 78 | 79
5 80 | 81 82 | 83 84 85 86 87 88 89 90 91 92 [93 94 95
6 96 [97 | 98 99 | 100 | 101 | 102 | 103 | 104 | 105 [106 | 107 | 108 [109 | 110 [111
7 |12 (113 | 114 [115 | 116 [117 | 118 [119 | 120 | 121 [122 | 123 | 124 | 125 | 126 | 127
8 [128 [129 | 130 | 131 | 132 [133 | 134 | 135 | 136 | 137 | 138 | 139 [140 | 141 | 142 | 143
9 | 144 [145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159
A | 160 [161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 [172 | 173 | 174 | 175
B | 176 | 177 | 178 | 179 | 180 | 181 [182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191
C | 192 [193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
D | 208 | 209 | 270 [211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223

| E [224 [225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
F

247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255

Converting addresses

Touse the chart to convert hexaddresses,
look up the decimal equivalent for the first
pair of digits in the address. This is the page
number. Then look up the decimal

equivalent for the second pair of digits to
find the position on the page. Multiply the
page number by 256 and add the position
onthe page.

Two’s complement conversion chart

This chart gives the two's complement in
hex of decimal numbers from — 1 to —128.
To convert a number to two's complement,

find the number in the chart, thenread
along the row for the first hex digit and up
the column for the second digit.

Second hex digit

First hex digit

F E D c B A 9

8 7 6 5 4 3 2 1 0

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 2b 26 27 28 29 30 31 32

33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87

88 89 90 9 92 93 94 95 96

97 98 99 | 100 | 101 | 102 | 103

104 | 105 | 106 | 107 [108 | 109 | 110 | 111 | 112

o wp@EOOMm

M3 [114 | 115 | 116 | 117 | 118 | 119

120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128

Doing conversions on a calculator

When you do conversions on a calculator
the calculator displays the remainderasa
decimal number. For example, if youare
converting decimal 134 to hex you divide by
16 then convert the answer and remainder
to hex digits. A calculator would give you
the answer as 8.375.

To convert the remainder to a whole
number you subtract the number before the
decimal point, then multiply by the number
youdivided by.

8.376—-8=0.375X16=6

So 134 + 16 =8 remainder 6 therefore
decimal 134 is86 in hex.

41

Z80 mnemonics and hex codes

The mnemonics and hex codes for the instructions covered in this book are givenon
the next few pages. The term “implicit addressing” used in these lists is just the name
for instructions where no operand need be specified in the hex code. There area
few other instructions not listed here and if you want to go further with machine code
youwill need a complete list of the Z80 instruction set (see page 40). The following
abbreviations are used in these lists:

n =number
nn = two byte number
r =register

¥ = register pair
x = address

¢ = condition
d =displacement

JP (zz) Jump to address held in
register pair rr. (Implicit

LD A, (x) Load accumulator

. with contents of address x.

LDE,r Loadregister E with
the contents of registerr.

ADC A,n Addwithcarry,a
number, n, to the accumulator.
(Immediate addressing.)

CALL x Gotosubroutine

ADCA,n CE.,n

DECr Decrementregisterr.

BEDCA,x Addwithcarry,
register r to the accumulator.
(Implicit addressing.)

starting at address X (Implicit addressing.)
(Immediate addressing.) DECA 3D

CALLx CDx DECB 05
CALL¢,x Gotosubroutine DECC 0D
starting at address x DECD 15
depending on condition c. DECE 1D
cmay be Z (equal); NZ (not DECH 25
equal); C (carry); NC (no DECL 2D

| carry); PE (parity even); PO

(parity odd); M (minus) or P
(plus). (Immediate

DEC r¥ Decrement register
pair rr. (Implicit addressing.)

ADCAA 8F
ADCAB 88
ADCA,C 89
ADCAD 8A
ADCAE 8B
ADCAH 8C
ADCA,L 8D

ADCHL,xr Add withcarry,
the contents of register pair it
to HL. (Implicit addressing.)

addressing.) DECRBC 0B
CALLZ,x CCx DECDE 1B
CALLNZ,x C4,x DECHL 2B
CALLC,x DC.x DECIX DD2B
CALLNC,x D4,x DECIY FD2B

CALLPE,x EE%

CALLPO,x E4,x

ADCHL,BC ED4A

CALL M,x FC,x

ADCHL,DE EDSA

CALLP,x F4.x

ADCHL,HL EDBA

ADDA,n Addanumber,n,to
the accumulator, (Immediate
addressing.)

CCF Complement carry flag.
(Implicit addressing.)

ADD,n Cé,n

ADD A,r Addregisterrtothe
accumulator. (Implicit

DEC (HL) Decrement
contents of address held in HL.
(Indirect addressing.)

DEC (HL) 35

INCr Incrementregisterr.
(Implicit addressing.)

CCF 3F
INCA 3C
CPn Compare contents of INCB 04
accumulator with datan.
(Immediate addressing.) :mg g ?2
CPn FEn INCE 1C
-
CPr Compare contents of INCH 24
register r with the accumulator. INCL 2C

(Implicit addressing.)

addressing.)
ADD A A 87
ADDA,B 80
ADDA,C 81
ADDA,D 82
ADDAE 83
ADDA,H 84
ADDA,L 85

ADDHL,rr Addthe contents

of register pair rr to HL.

(Implicit addressing.)

CPA BF
CPB B3
CPC B9
CPD BA
CPE BB
CPH BC
CPL BD

ADDHL,BC 09

ADDHL,DE 19

CP (HL) Compare contents of
accumulator with contents of
address held in HL. (Indirect
addressing.)

INC rr Increment register pair
7. (Implicit addressing.)

INCBC 03
INCDE 13
INCHL 23

INC (HL) Increment contents
of address held in HL. (Indirect
addressing.)

INC (HL) 34

JPx Jumptoaddressx.
(Immediate addressing.)

ADDHLHL 29

CP(HL) BE

JPx C3x

addressing.) (Absolute addressing.) (Implicit addressing.)
JP(HL) E9 LD A, {x} 3A, (x) LDEA 5F
JP(IX) DDES LDEB 58
JP(IY) EDES LDrr,(x) Loadregister pairrr LDE.C 59
with contents of addresses x LDE,D B5A
JPex Jumptoaddressx andx+1. (Absolute LDEE 5B
depending on condition c. addressing.) LDEH 5C
c may be Z (equal); NZ (not
equal); C (carry); NC (o LD BC, (x) ED4B, (x) LDE,L 5D
carry); PE (parity even); PO LD DE, {x) ED5B, (x) LDH,x Load register Hwith
(parity odd); M (minus) or P LD HL, (x) 2A, (x) the contents of registerr.
i Implicit addressing.
;ﬂgﬁés(;;l; ;echate LD B,r Loadtheaccumulator ¢ LI; HA g_})
with contents of registerr. r
JPZ,x CA,x (Implicit addressing.) ::g :ag g?
JPNZ,x C2,x ;
JPC.x DA X DA 7k LDH,D 62
JPNC.x D2,x LbAB Li] LDH,E 63
JPPE,x EAX LDAL i LDH,H 64
JPPO,x E2,x tg - 8 LDH,L 65
JP M,x FAx LD A’H 7c LD L,r Loadregister L withihe
JPP.x F2,x D A’ L 7D contents of register r. (Implicit
_ - addressing.)
iﬁig};ﬂpdﬂzg;\éz}{g;gd LDB,r Load regis'ter B with LDL,A 6F
(Relative addressing.) the contents ofreglster I. LDL,B 68
(Implicit addressing.) LDL,C 69
g 154 LDB,A 47 LDL,D 6A
JRec,d Jumprelative. Jumpd LDB,B 40 A L
bytes (the displacement) LDB.C 41 LDLH 6C
depending on condition c. LDB,D 42 LDL.L 6D
cmay be NZ (not equal); Z LDB,E 43 LD, (rr) Loadregister r with
(equal); NC (no carry) or C LDB,H 44 contents of address held in
(carry). (Relative addressing.) LDB,L 45 register pair rr. (Indirect
JR Nz,d 20,d addressmg.)
JRZd 28,d LDC,r Load regis'teerith LDA, (BC) 0A
JRNCA 30.d the contents ofret__:nster : LD A,(DE) 1A
IR C,dr 38:d (Implicit addressing.) LDA,(HL) 7E
LDC,A 4F LD B,(HL) 46
LDrn Loadregister r with LDC,B 48 LD C,(HL) 4E
datan. (I'mrnediate LDC,C 49 LDD,(HL) 56
addressing.) LDC,D 4A LDE,(HL) 5E
LD AN 3E,n LDC,E 4B LDH,(HL) 66
LDB,n 06,n LDC,H 4c LDL,(HL) 6E
LDC.n 0E,n LDC,L 4D LD (x),A Storethe contents of
LDD,n 16,n] i the accumulator in address X.
LDE,n 1E,n LDD,r Loadregister Dwith || (apsolute addressing.)
LD H,n 26.n the contents of registerr.
LDLn %En (Implicit addressing.) LD {x},A 32,x
LDD,A 57 LD (x),rr Store the contents of
LDrr,nn Loadregister pairrr LDD,B 50 register pair It at addresses x
with two byte num.bq nn. [DD.C 51 and x+ 1_. (Absolute
(Immediate addressing.) LDD.D 52 addressing.)
LDBC,nn 01,nn LDD,E 53 LD (x),BC EDA43,x
LD DE,nn 11,nn LDD,H 54 LD (x),DE ED53,x
LD HL,nn 21,nn LDD,L 55 LD (x),HL 22,x

43

LD (HL),A 7

LD (xz),x Storethe contents of RETC D8 SBC A,(HL) Subtract with
registerr at the address held in RETNC DO carry the contents of address
register pair rr. (Indirect RETPE E8 held in register pair HL, from
addressing.) RET PO EO the accumulator. (Indirect
LD (BC),A 02 RETM F8 addressing).
LD (DE),A 12 RETP FO SBCA,(HL) 9E

LD (HL),B 70

LD (HL),C 71

LD (HL),D 72

SBC A,n Subtract with carry
data n from the accumulator.
(Immediate addressing.)

SCF Set carry flag. (Implicit
addressing.)

SCF 37

LD (HL),E 73

LD (HL),H 74

SBCAn

DE,n

LD (HL),L 75

LD (xr),n Storedatanat

SBC A,r Subtract with carry
contents of registerr fromthe
accumulator. (Implicit

SUBn Subtractdatanfromthe
accumulator. (Immediate
addressing.)

SUB,n D6, n

6502 mnemonics and hex codes

This chart shows the mnemonics and hex codes for all the instructions (plus afew
more) covered in this book. The mnemonic instructions are given down the leftand
the hex codes for each instruction in the different addressing modes are shown
across the chart. Zero page addressing is just like absolute addressing, i.e. the
operand is the address where the data is stored, but the address must be inpage
zero (1L.e. locations 0-255) of the memory (see page 10). Implied addressing is justthe
term used to describe instructions where no operand need be specified, e.g. CLC.
There are a number of other instructions not given here, and if you want to gofurther
with machine code you will need to get a complete list of the 6502 instructionset.

SUBr Subtract contents of
register r fromthe
accumulator. (Immediate
addressing.)

ccanbe Z (equal); NZ (not
equal); C(carry); NC (no
carry); PE (parity even); PO

address held in register pairr. addressing.)
(Immediate/indirect
addressing.) SBCAA 9F
LD (HL),n 36 SBCA,B 98
SBCA,C 99
RET Returnfrom subroutine. SBCAD aA
(Indirect addressing.) SBCAE 9B
RET C9 SBCAH ac
RET ¢ Return from subroutine SBCAL 9D
depending on condition c.

SBC HL,xv Subtract with carry
contents of register pair it from
register pair HL. (Implicit

SUBA 97
SUBB 90
SUBC 91
SUBD 92
SUBE 93
SUBH 94
SUBL 95

SUB(HL) Subtractthe

(parity odd); P (plus); M addressing.) contents of address held in HL
(minus). (Indirect addressing.) SBCHL,BC ED42 from the.accumulator. (Indirect
RETZ cs SBCHLDE ED52 addressing.)
RET NZ Co SBCHL,HL ED62 SUB(HL) 96
Puzzle answers Tip: an easy way to work out the two's
Page 11 complement of a number is to subtract it

&ATindecimalis 167. 513 in hexis &201.

from 256, then convert the answer to hex.

Page26 _ E.g. 256—6=250 whichis FA in hex.
1.25+173 (28is &19and 73 is &49) i, T
Z80 6502 - g
Mnemonics Hex codes Mnemonics Hex codes Meaning
LD A, &19 3E,19 LDA #&19 A919 Put &19 in accumulator.
ADDA, &49 C6,49 ADC #8&49 6949 Add &49 to accumulator.
Store contents of
LD (address),A | 32,address STA address 8D address agg‘;mﬂamr atacertain
a ess.
RET C9 RTS 60 Return
2.64+12+14 (64 is &40, 12is &0C and 14 is &0E)
Z80 6502 Meani
Mnemonics Hex codes Mnemonics Hex codes eaning
LD A, &40 3E,40 LDA #&40 A940 Put &40 in accurnulator.
ADDA, &0C C6,0C ADC #8&0C 690C Add &0C to accumulator.
ADDA, &OE C6,0E ADC #&0E 69 0E Add &0E to accumulator.
Store contents of
LD(address), A 32, address STA address | 8D address aggx;mulator ata certain
a ©s8S.
RET C9 RTS 60 Return

Puzzle answers continued on page 48.

;%’ o o x >
Addressing mode 5 s & 3 @ o =
£ g o 3 3 3 =
E < g | E g | E| 2
. Data |Any Address |Address | Address | None | Displace-
Operandis address |inpage [+X +Y ment
zero register |register
BDC Add withcarry,i.e. add a byte, plus the 69 6D 65 7D 79
carry flag, to the accumulator. =
BCC Branchif carry clear. Note that notall the instructionscan /90
BCS Branchif carry set. __Ie= beusedin all the addressing modes.) B0
BEQ Branchifequal. FO
BMI Branch if minus. O 30
BNE Branchifnotequal. Do
BPL Branchifplus. X 10
BVC Branchif overflow clear. 50
BVS Branchif overflow set. 70
CLC Clearcarry flag. 18
CMP Compare withthe accumulator. C9 CD Cb DD D9
CPX Compare withregister X. EO EC E4
CPY Compare withregister Y. Co CcC Cc4a
DEC Decrement (subtract 1 from) memory CE Cé DE
location.
DEX Decrement (subtract 1 from) X register. CA
DEY Decrement (subtract 1 from) Y register. 88
INC Increment (add 1 to) memory location. EE E6 FE
INX Increment(add 1to) X register. E8
INY Increment(add 1to) Y register. C8
JMP Jump to address specified in operand. 4c
JSR Jump to subroutine starting at address 20
specified in operand.
LDA Load accumulator. A9 AD Ab BD B9
LDX Load Xregister. A2 AE AB BE
LDY Load Y register. A0 AC A4 BC
RTS Return from subroutine. 60
SBC Subtract with carry. Subtract from the E9 ED Eb FD Fa
accumulator and borrow from the carry flag.
SEC Setcarry flag. 38
STA Store accumulator at a certain address. 8D . 85 9D 99
STX Store X register ata certain address. 8E 86
STY Store Y register ata certain address. 8C 84
TAX Transfer accumulator to X register. AA
TAY Transfer accumulator to Y register. A8
TXA Transfer X register to accumulator. BA
TYA Transfer Y register to accumulator. o8

45

Machine code words

Hash sign. This is the sign used onsome
computers to indicate hex numbers. For the
6502 microprocessor it is used toindicatea
piece of data.

& Ampersand sign. This is another sign
used to indicate hex numbers.

Absolute address. The actual addressofa
piece of data.

Absolute addressing. Anaddressing
mode in which the instruction contains the
address of the data. Also called extended
or direct addressing.

Bccumulator, The register where bytes of
information on which arithmetical or logical
operations are to be carried out, are held.
Address. Anumberused toidentifya
location in the computer's memory.
Addressing modes. The various waysin
which you can tell the computer where to
find the data to work on in a machine code
program.

Arithmetic logic unit (ALU). Thearea
inside the CPU where arithmetical and
logical operations are carried out.
Assembler. A program which converts
instructions written in assembly language
mnemonics into the computer’s own code.
Assembly language. A method of
programming the computer using letter
codes, called mnemonics, to represent
machine code instructions.

Binary. Anumber system with two digits, 0
and 1 and in which each digit in anumber
has twice the value of the digit on its right.
Bit. A single unit of computer code,i.e.al
or 0 representing a pulse or no-pulse signal.
Buffer. Atemporary storage areainthe
computer’'s memory where data is held on
its way to or from its final destination.
Branch. Aninstructiontellingthe
computer to jump to another line ina
prograrm.

Byte. A group of eight pulse and no-pulse
signals (or “bits”) which represents a piece
of information in computer code.

Carry flag. A bitinthe flags register which
issetto 1 when the result of an addition will
not fit into eight bits.

Clear. Tomake abit, e.g. one of the bitsin
the flags register, zero.

Complement. Also called “flipping the
bits" this is the process of changing all the
Osinabyteto 1 and all the 1sto0.

Conditional branch. Aninstruction which
tells the computer to jump to another line in

the program depending on the result of a test.

Direct addressing. See absolute
addressing.

Disassembler. A program which can
display the contents of a series of memory
locations on the screen inassembly
language. You can buy a disassembler on
cassette and it is useful for debugging
machine code programs and for examining
the programs in your computer's ROM.
Displacement. A number used inajump
or branch instruction to tell the computer
how many locations to jump to find the next
instruction. Also called an offset.

Flag. Abitinthe flagsregister whichis
used to indicate a certain condition, e.g. the
presence of a negative number, or ofa
carry over in an addition.

Hexadecimal, or hex. A number system
which uses 16 digits (the numbers 0-9 and
letters A-F). Each digit in a hex number has
16 times the value of the digit on its right.
Hexloader. A BASIC program which
converts the hex codes of a machine code
program into decimal numbers and pokes
theminto the computer's memory.

High order byte. The first two digitsina
hex address which represent the number of
the page in the memory where the address
is. Also, the two digits which show how
many 256s there are in a number larger than
255.

HIMEM. The highest addressinuser RAM.
Immediate addressing. Anaddressing
mode in which the data for an instruction is
included in the instruction.

Implicit addressing. Anaddressing mode
in which the operand is understood and
need not be specified.

Implied addressing. Same asimplicit, see
above.

Indexed addressing. Anaddressing
mode in which the contents of anindex
register are added to the address givenin
the instruction to work out the actual
address of the data.

Index registers. The registersusedin
indexed addressing and also, in the 6502, as
general purpose registers.

Indirect addressing. Anaddressing
mode in which the operand isused asa

pointer to the data. The operand may be an
address or, in the Z80, a pair or registers,
and it holds the address of the data.
Instruction. Anoperation tobe carried out
by the central processing unit.
Interpreter. A program which translates
instructions in BASIC (or other high level
language) into the computer’s own code.
Instruction set. Allthe operations which
can be carried out by a particular
MiCrOProcessor.

Jump. Aninstruction which tells the
computer to go to another line in the
program.

LIFO. Thisstands for “last in/first out” and
describes the method used by the
computer to store information in the stack.
Low order byte. Thetwo hexdigitsinan
address which give the position of that
address within a page of memory. Also, the
two hex digits which show the number of
units in a number larger than 255.
Microprocessor. The chip which contains
the computer’'s CPU and which carries out
program instructions and controls all the
other activities inside the computer.
Mnemonic. Aletter code usedin
assembly language to represent an
instruction in the computer's own code. The
word mnemonic (pronounced nemonic)
means “to aid the memory” and assembly
language mnemonics sound like the
instructions they represent.

Object code. A programwhich hasbeen
translated into machine code from
assembly language or another high level
language.

Offset. Seedisplacement.

Opcode. The part of an instruction which
tells a computer what to do.

Operand. The part of an instruction which
tells the computer where to find the datato
work on.

Operating system. A group of programs
written in machine code and stored in the
computer's ROM, which tell it how to carry
out all the tasks it has to do.

Page. A subdivision of memory. On most
home computers a page is 256 locations.
Pointer. A memory location (or pair of
registers) which contains the addressofa
piece of data.

Pop. Toremove anitem stored in the stack.

Processor status register. This is the 6502
name for the flags register (the register
where each bitis used to record a certain

conditioninside the computer).

Program counter. The register which
contains the address of the next instruction
to be fetched from the memory.

Pull. Same as pop, i.e. toremove anitem
from the stack.

Push. Toplace anitem inthe stack.
RAMTOP. The highest address inuser
RAM.

Registers. The placesinthe CPUwhere
bytes of instructions, data and addresses
are held while the computer works onthem.
Relative addressing. Anaddressing
mode in which the computer works out the
address of the next instruction by addinga
number called the displacement or offset,
to the address in the program counter.
Screen memory. Thelocationsin RAM
which are used to hold information tobe
displayed on the screen.

Sign flag. The bit in the flags register
which is used to indicate negative and
positive numbers.

Source code. A program writtenin
assembly language, or other high level
language such as BASIC.

Stack. Anarea ofthe memory used by the
computer for temporary storage and where
the last itemn stored is always the first tobe
retrieved.

Stack pointer. A registerinthe CPUwhich
contains the address of the last item in the
stack.

Systems variables. Memory locations in
RAM which hold information about the
current state of the computer.

Top of memory. The highestaddressin
user RAM.

Two’s complement. A system of notation
used to represent negative numbers. To
find the two's complement of a number you
complement (make all the lsintoOsand all
the Os into 1s) the binary for that number and
thenadd 1.

User RAM. The part of RAM where BASIC
programs are stored.

Zero flag. The bitinthe flags register
which indicates when the result of an
operation is 0 and is also used to show when
two bytes are equal.

Zero page. The first 256 locations inthe
memory. !

Zero page addressing. Used onlyonthe
6502, this is an addressing mode in which
the operand is an address in page zero of
the memory (i.e. from 0-255). 47

48

Puzzle answers continued Decimal Hex

Page 28 High order | Low order | High order | Low order

00011010 is 26 decimal. 307 1 51 &01 &33

11111011is251 decimal. 21214 82 222 &82 &DE

10101010is 170 decimal. 759 2 247 802 &F7
1023 3 255 &03 &FF

Page 31

To adapt the program on page 27 for

answers greater than 255 youneed todelete command:

given below. To see the result you use this

the return instruction and add the lines PRINT PEEK(address 3)+~PEEK(address4)*256.
Z380 6502 .
Mnemonics Hex codes Mnemonics Hex codes Meaning
LD A, &00 3E,00 LDA #&00 A900 Put 0 inaccurmulator.

ADC A, &00 CE,00 ADC #&00 6900 P
LD(address4),A | 32 address4 | STAaddress4 | 8Daddress4 B s iducansll
RET C9 RTS 60 Return.

Page 31

Hex for the two's complement of 12 is &F4; 18is &EE and 91is &F7.

Index
& ampersand sign, 8, 12, 16, 18, 46
hashsign, 12, 18, 18, 46
absolute addressing, 18, 27, 46
accumulator, 14-185, 17, 30, 32, 46
address, 8-9, 11, 19, 46
converting to hex or decimal, 11
inmachine code, 18-19
addressing modes, 27, 46
ALU (arithmetic/logic unit), 13, 14, 46
ASCII code, 13, 24, 32
assembler, 5, 16, 40, 46
assembly language, 5, 17, 19, 46
Atari, 3, 24
BASIC, 4, 12,20, 40
big numbers, 28, 30-32
binary,
code, 4, 5, 16
numbers, 4, 19, 28, 46
to hex conversion, 37
bit, 4, 46
branch, 34, 35, 46
buffers, 10, 46
byte, 4, 13, 19, 20, 46
carry flag, 14, 15, 17, 29, 30, 31, 36, 46
caérgying over numbers in addition, 29,
- 31
character codes, 13, 32
clear, to, 29, 46
Commeodore 64, 3,7
comparing, 32
complement, 46
conditional branches, 35, 36-31, 46
control unit, 13, 14
CPU (central processing unit), 7,
14-15, 16, 19
crash, 20
databytes, 23, 28
decimal numbers, 11, 41
decrement, 36, 38
direct addressing, 27, 46
disassembler, 46
displacement, 36-37, 46
display file, 8
extended addressing, 27
flags register, 14-15, 17, 29, 36
hex,
codes, 16, 18, 19
converting to decimal, 11, 41

dump, 19
loader, 5, 23, 24, 25, 46
number system, 5, 8, 11, 46
high order byte, 19, 28, 30, 31,46
HIMEM, 8, 20, 21, 46
immediate addressing, 18, 27, 33, 46
implicit addressing, 46
implied addressing, 46
increment, 33, 34, 38
indexed addressing, 34, 39, 46
index registers, 14-15, 46
indirect addressing (280), 33, 38, 46
instruction, 4, 5, 13-14, 16, 47
instruction set, 16, 47
interpreter, 4, 8, 20, 47
jumps, 33, 35,47
LIFO, 10, 47
locations, memory, 8-9, 10, 11, 12-13
lowering RAMTOP, 21
low order byte, 19, 28, 30-31, 47
machine code,
checklist, 26
length of program, 20
subroutines, 39, 40
where to store in memory, 20-22
memory, 8-9, 10, 12-13
memory map, 8
microprocessor, 7, 16, 47
mnemonics, 5, 16-17, 47
object code, 18, 47
offset, 36-37, 47
opcode, 186, 18, 18, 47
operand, 16, 18, 27, 47
operating system, 8, 10, 11, 13, 20, 47
Oric micro, 3,7, 21
overflow bit, 36
page (of memory), 10, 11, 19, 21, 47
parity/overflow bit, 36
PEEK, 12-13, 21, 26, 31
pointer, 33, 47
POKE, 12-13,23
pop, 35,47
position on page (of address), 11, 19,
21
processor status register, 15, 29, 47
(see also flags register)
program counter, 14-15, 35, 47

RAM (random access memory), 6, 12,

13, 20-21
RAMTOP, 8, 20, 21, 47
lowering, 20-22
registers, 13-14, 27, 30, 31, 47
relative addressing, 36, 47
REM statement, storing machine
codein, 22
reserved for use of the operating
system, 8, 10
return instruction, 23, 35
ROM (read only memory), 6, 12, 13
running a machine code program, 25
screen memory, 8, 13, 47
set, to, 29
sign flag, 14, 36, 47
source code, 18, 47
Spectrum, 13, 24, 32
stack, 10, 14, 15, 20, 35, 47
stack pointer, 14-15, 4T
subroutines, 35
systems variables, 10, 20, 21,47
Timex 1000, 9, 13, 22, 24
Timex 2000, 13, 24, 32
top of memory, 20, 21, 47
two's complement, 37, 41, 47
user RAM, 8, 20, 47
VIC 20,7, 13,22
zero flag, 32, 33, 34, 36, 47
zero page, 10, 45,47
zero page addressing, 45, 47
ZX81,9, 13,22, 24

Hex loader conversions
Change these lines for the ZX81
(Timex 1000):

40 INFUT H$

70 LET X=
(CODE (H%$) —28) #1646
80 Delete

90 LET ¥Y=CODE
(H$ (2 TO)»)-28
100 LET X=X+Y
110 Delete
55 Delete
1460 Delete
Change this line for Atari computers:

90 LET ¥Y=ASC{AE(Z))

Other Usborne Books

Thereare l}u.nd.reds of colourful Usborne books for all ages on a wide range of
subjects. Titles which may be of particular interest to you are:

—USBORNE NEW TECHNOLDGY —,

B e et N

e J
-~

This exciting new series takes a serious look at what is happening now in the world of new
technology. Many people thmk that such things as lasers, robots, databases and interactive TV
belong only to the world of science fiction but, as these brilliantly illustrated books show, many of
them are already in use and affecting our everyday lives. The books take a straightforward approach
to these apparently difficult subjects, making them easy for everyone to understand.

Page size: 240 X 170 mm 48 pages

Ushorne Guide to

__)1% B

TV & VIDEO| PR
— P g <

i~ A

- R .|

3 ot

Usbrne Ekectronc Wokd

r“ml\'n-n.

e

T
witken
—
Usborne Electronic Workl

el

This up-to-the-minute series on electronic technology explores the worlds of computers, TV and
video,. audio and radio and, in a new title, films and special effects. In a clear visual way, the books
describe the very latest equipment and show what it does and how it works. They also explain much
of the confusing technical jargon which usually surrounds these subjects. There are fascinating
sections on what computers can do for us and how they do it, how TV and video cameras can turnan
ordinary scene into a pattern of electronic signals that can be stored on tape, and how arecording
studio works. Audio & Radio also contains instructions for building a simple radio.

Page size: 276 X 216 mm 32 pages

| — Usborne Computer Books

Usborne Computer Books are colourful, straightforward and easy-to-
understand guides to the world of home computing for beginners of allages.

i . Usborne Guide to Computers A colourful introduction to the world of
computers. “Without question the best general introduction to computing | have
everseen.””Personal Computer World

Understanding the Micro A beginner’s guide to microcomputers, how to use
them and how they work. “This introduction to the subject seems to get
everything right.” Guardian

Computer Programming Asimpleintroductionto BASIC forabsolute
beginners. “... lucid and entertaining ...”’Guardian

Computer and Video Games All about electronic games and how they work,
with expert’s tips on how to win. “The ideal book to convert the arcade games
freak to real computing.” Computing Today

Computer Spacegames, Computer Battlegames ListingstorunontheZX81,
‘Spectrum, BBC, TRS-80, Apple, VIC 20 and PET. “Highly recommendedto
anyone ofany age.” Computing Today

Practical Things to do with a Microcomputer Lotsof programstorunanda
robot to build which will work with most micros.

ComputerJargon Anillustrated guide to all thejargon.

Computer Graphics Superblyillustrated introduction to computer graphics
| with programs and a graphics conversion chart for most micros.

Write Your Own Adventure Programs Step-by-step guide to writing adventure
games programs, with lots of expert’stips.

Machine Code for Beginners A really simple introductionto machine code for
the Z80 and 6502.

| Better BASIC A beginner’s guide to writing programs in BASIC.

Inside the Chip Asimple and colourful account of how the chip works and what
itcando.

| +001-99
| ISBN 0-8L020-735-8

T 00199
!
|
|

7808607207351

ISBN 0860207358 £1.99

