WORKING
WITH

McMASTER UNIVERSITY LIBRARY
QA 76.8 .M7

Wi

T
- J : » orking with
=\ |Il]
N \ _|:. . 3(,

o & TNTINJI

i

Working with MSX BASIC

Other books of interest

The MSX Games Book
Jim Gregory
0 00 383083 7

Working with
MSX BASIC

lan Sinclair

COLLINS
8 Grafton Street, London W1

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Collins Professional and Technical Books 1985

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © 1985 Ian Sinclair

British Library Cataloguing in Publication Data
Sinclair, lan R.

Working with MSX BASIC.

1. Basic (Computer program language)

2. Microcomputers— Programming

I. Title

001.6424 QA76.73.B3

ISBN 0-00-383103-5

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or transmitted,

in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of th
publishers.)

viii Preface

MSX manufacturers will also offer cassette recorders, though if you have a
recorder already it can probably be used. Many of the MSX manuals say
very little about tuning a TV receiver to the computer’s signals, or about
checking and adjusting cassette recorders, and so these topics have been
dealt with in Appendix A.

Another important point about MSX is that the system can be expanded;
moreover you are not compelled to buy products from just one
manufacturer. Many computer manufacturers in the past designed their
machines so that it was almost impossible to use additional equipment from
any other supplier. This meant that when you decided to scrap the
computer, you had to scrap everything else as well. You no longer have to
accept this situation, because MSX uses standardised connections and
signals. Any computing equipment that you buy for one MSX machine
should be usable on any other MSX machine. In addition, if you already
have a printer which is fitted with the standard Centronics connection you
will be able to use it with your MSX computer; all you will need is a
connecting cable.

If you have used another type of computer, perhaps at school, at work, or
at home, then you will readily understand the advantage of the MSX system
from reading this book. In particular, you will appreciate the ability to carry
out precise arithmetic, and to have easy control over sound and graphics. As
your programming knowledge advances, you will find that MSX has even
more to offer, particularly if you are interested in lists and in filing data. For
beginner or expert alike, MSX has a bright future.

I would like to emphasise that this book was written while I was using a
Toshiba MSX computer, and that the listing of programs in this book were
obtained from an Epson printer that was connected to the MSX computer.
This might seem to be an unnecessary claim, but many books still appear in
which the program listings have been retyped, with errors appearing in
many of them. Every program which appears in this book, and every
example of programming commands, has been tested on the MSX
computer which I have here in front of me. Nothing has been copied
untested from the manual, and where a command has operated in a way that
is not obvious from the manual description I have pointed out the
difference. One price that I have had to pay for this has been the
disappearance of the £ signs from several listings, notably in Figs 2.18 to
2.20. This is because the pound character which appears on the computer
screen does not appear on my printer, but [have noted in the captions where
the pound sign should be typed in. All of the screen displays which I have
described were obtained on a Fidelity TV/monitor, which was used as a
normal TV receiver.

As always, I am greatly indebted to many people who have made this
book possible. The machine was provided by Toshiba (UK) Ltd., and
Richard Miles of Collins Professional & Technical Books worked tirelessly
to ensure that I had this MSX computer on my desk as soon as possible. I

Contents

Preface

1

el I =V, B - VS S

o

11
12

Where Do We Start?

Inputs and Outputs

Quantities of Numbers

Strings Attached

Repeating Yourself

Menus and Subroutines

Special Effects and Geometrical Shapes
DRAW Graphics

Identifiable Flying Objects

Sounds Unlimited

Cassette Data Filing

Editing, Fault-tracing and Miscellany

Appendix A: TV and Cassette Hints

Appendix B: Cassette Head Adjustment

Appendix C: Some Other Commands
Index

Vil

10
29
44
61
79
97

115

128

143

162

182

193

201

203

205

Preface

MSX is the name for a set of standards to which many computers are being
constructed at present, and to which many more will be constructed in the
future. Until the advent of MSX, a tape which had been recorded by one
make of machine could not be used on any other machine. Worse still, the
programmer of one make of machine would find it quite difficult to switch
to another machine without relearning the language. MSX has at long last
ended this ridiculous situation, so that anyone who buys an MSX computer
will be able to exchange tapes and program ideas with anybody else using
MSX. The manufacturers may be different, but the machines work in
exactly the same way. An additional bonus for the retailers is that many of
the MSX machines are manufactured by companies who are respected and
trusted, with a long history of success in radio, TV and hi-fi.

If you have bought this book as a guide to MSX before buying, a few hints
on machines may be helpful. Though all of the machines will run the same
tapes, and be programmed in the same way, they are not identical. Some, for
example, have better keyboards than others. For anyone who does any
more with a computer than play games, the provision of a good keyboard is
very important. Some machines can be connected to many more devices
than others. The business user of a computer will want to connect up a
printer and a disk drive, and this is provided for in a// MSX machines. If you
want to use your computer to control a music synthesiser or to work with
pictures from a video camera, however, you may find that some machines
are better suited to this than others. Very often, you will find that the items
to which your MSX computer can be connected reflect the special interests
of the manufacturer.

To make up a computer system you need the MSX computer, a cassette
recorder, and a TV receiver or monitor. All MSX machines provide colour
signals to colour TV receivers, and sound signals also. Similarly, all MSX
machines can be used with monitors. A monitor is a form of TV which has
been designed to take signals directly from a computer or a video recorder,
rather than from an aerial. [t gives a much clearer picture than you can ever
get with a TV receiver. Many manufacturers of MSX computers will
probably offer colour menitors in addition to the computers. Most of the

Preface ix

owe a special debt of gratitude to Richard Yardley, of Spectravideo Ltd. He
alone was able to get me a printer cable for the MSX computer at a time
when there appeared to be only two such items in the country. Among many
others at Collins Professional & Technical Books, Richard Miles, Janet
Murphy and Sue Moore worked wonders with my manuscript, and the most
efficient team of typesetters and printers that I know operated to produce the
book in record-breaking time. I am sure that the result of all this work will be a
book that will match the capabilities of your MSX computer.

Ian Sinclair

Chapter One
Where Do We Start?

Welcome to MSX computing. By this time, you don’t have to be told how
well-designed and constructed your new MSX computer is. What you
probably want to know, however, is just how you can get more out of it. If
you intend to use the computer as you use a washing machine, running only
programs which are built-in or which you can buy, then the manual which
comes with the machine will serve you well. But buying a computer and not
programming it for yourself is like buying a Porsche and getting someone
else to drive it. This book is all about how you can make your MSX
computer do what you want, so that you can make full use of all these keys
that you have paid for.

To start with, just what can the computer do for you? You may have
bought it to play games, as many owners do. Games nowadays are designed
by professionals, using much larger computers, so you can’t really hope to
come up with a new and earth-shattering game with a small machine. What
you can do, though, is to use the machine for your own purposes. You might
want to keep track of the members of your Rugby Club, or the purchases
from your mail order catalogue. You might want to devise educational
games for your children; games which are suited to their particular needs.
You might want to run a local Camera Club, keep track of shares on the
Stock Exchange, analyse what your car costs, check your income tax ... the
list is endless. Whatever your own interest is, whether it's tracing your
ancestors or cataloguing the works of a long-dead writer, you'll need a
program.

A computer is a brainless machine, whatever anyone says. What makes it
work is a set of instructions that we call a program. You can write such a
program for yourself, so that it does what you want. Now if your program is
useful to you, it might possibly be interesting to someone else. You might be
the only person using the computer to keep the scores and records of the
Little Tiddleworth Darts Club, but there could be a lot of other people who
would like to try out your program for their own uses. That's where MSX
comes in. If you have written a program for one MSX computer, and
recorded it on tape or on disk, then it should be usable on any other MSX
computer so long as there is enough memory in that machine to hold the

2 Working with MSX BASIC

program. MSX is a system that is used by many computer manufacturers
for just this reason.

What is a computer, then? The short answer is that it’s a machine which
can organise information for you. Give it a set of names and addresses, and
it will store them, arrange them into alphabetical order, produce the address
for a name that you type, and so on. Give it alist of names and payments to a
club. and it will give you a list of who paid how much and who still owes
what. Give it a group of numbers inanswer to questions about your earnings
and expenses, and it will show you your correct tax code. Does this sound
like a brainless machine? If it doesn’t, that’s because all of the organisation is
done under the command of a program. The program is what we call the
software of the machine. Without a suitable program, the computer can do
nothing. The machine itself is the brainless bit, the clever part is the
program. So how do you go about writing a program?

It isn’t as difficult as you might think. The reason is that there has been a
great deal of progress in this respect in the last twenty years. Many years ago
computers were big machines which had to be programmed by skilled
people who understood the number code system — called machine code -
that the computer used. As time went on, programming languages were
invented. A programming language is a way of instructing a computer by
using command words which are English words. Even before micro-
computers were dreamed of, there were several of these programming
languages, but the most important one for us is BASIC. BASIC is short for
Beginners All-purpose Symbolic Instruction Code. It was invented at
Dartmouth College, USA, as a way of teaching computer programming.
Since then, it has spread like wildfire to become the programming language
that is used for each and every home computer. It’s still a good language
for beginners in the sense that it’s easy to learn, but it has also developed
into a language that gives you a great deal of control over your
computer.

Your computer uses a special variety of BASIC which is called MSX
BASIC. It’s one of the most up to date varieties of BASIC, and yet it has
been developed from one of the first versions of BASIC used in small
computers; Microsoft BASIC. What that all boils down to is that MSX
BASIC is easy to use, reliable, and yet capable of getting the best from your
computer. Unlike the older varieties of BASIC, too, it will work on any
MSX machine. Can you imagine a world in which your records wouldn’t
play on your neighbour’s hi-fi system? Would you buy a cassette player if
you knew that only one make of cassette could be used with it? That’s the
state that computing was in before MSX. Now for anyone who doesn’t have
an MSX machine, that’s the way it still is, but for you, things are different.
Your computer can use a tape or disk that was recorded by any other MSX
computer. Anyone else who has an MSX computer can make use of one of
your tapes or disks. That’s the way it should have been in the first place, but
it has taken MSX to do it. If you have never tuned a TV receiver, or adjusted

Where Do We Start? 3

a cassette recorder, there’s help for you in Appendices A and B at the end of
this book.

BASIC foundations

The BASIC language is built like any other language, with vocaculary and
syntax. Vocabulary means the words that are used to make things happen.
Syntax means the way that you have to use the words. Like any other
language, BASIC has rules which have to be learned. What makes it so
much easier for you to learn is that the words are mainly English words, and
the rules are simple. Moreover, your computer will tell you when you have
disobeyed the rules!

To learn about BASIC, then, you have to learn what a number of words
mean. There are about one hundred of these words, and the meaning of
most of them is obvious. In addition, you must learn the correct way to use
each word. This is where you really come up against the ‘brainless machine’
bit. The computer can make use of a command which uses the correct word
in the correct way. If you use the wrong word, spell the word wrongly, or use
it in the wrong way, the machine can’t do anything - so it stops. When it does
this, a message will appear on the screen to tell you what has happened. This
is called an error-message, and from what it says, you should be able to find
what went wrong.

If that makes it sound simple, that’s because it is simple, and that’s why it
needs to be learned. Suppose, for example, you had a foreign friend who
understood only about one hundred words of English. How would you
make him understand, using only the words he knows, that you want him to
do something like arrange words in alphabetical order or find how many
members of the dominoes club have paid their subscriptions? The answer is
that you have to break up these complicated actions into a lot of simple
steps. You then have to describe each step in the words that your hundred-
word friend understands. There’s one big difference here, though. A human
who knows a hundred words of a language will pick up other words very
quickly. A computer doesn’t, so far, have this ability. Every instruction has
to be made out of these important command words, the keywords as we call
them. A program consists of an arrangement of these keywords in such a
way that something useful is done. A program might be educational,
amusing, for business or leisure, working with words or with numbers;
whatever you want it to be. Whatever it is, though, it still has to make use of
these keywords, because that’s all that the machine can understand. You
can’t type instructions like “Who ordered a dozen spob-tackers? or ‘What
will my payments be if I pay back one fifth of the mortgage?’. These are
questions for humans with human brains, not for computers. Computers
have memory. They can store information and they can store instructions.

4 Working with MSX BASIC

They can’t puzzle out what a new instruction might mean, though, which is
why we have to write programs.

Structure of BASIC

One of the command words in BASIC is used here to let you see what a
BASIC program looks like. The word is LIST, and you use it by typing the
word, then pressing the key that is marked RETURN or ENTER, or
indicated with a large arrow which curls down and left. The RETURN/
ENTER key is an important one. I’s the ‘do it now’ key that makes a
command work. Why do we need it? The brainless machine, you see, can’t
tell when you have finished typing, and it needs a signal to tell it that what's
there is everything — get on with it. The RETURN /ENTER key provides
that signal. If you have a BASIC program in the memory of the computer,
then typing LIST and pressing the RETURN/ENTER key will make the
program appear. Unless the program is very short, it will take up much more
space than is available on the screen. As new instructions appear at the
bottom of the screen, then, previous ones vanish from the top. It’s just as if
the screen was a frame, and the program on a long sheet of paper being
wound through the frame. This action is called scrolling. Because of
scrolling, what you normally end up with when you use LIST is the last few
sets of program instructions. You can stop the scrolling at any stage by
pressing the STOP key once. Pressing STOP a second time will restart the
scrolling. If there is no program stored in the memory of the computer, then
using LIST will produce nothing. Try it for yourself by loading one of the
sample programs that came with your computer, and making it stop by
pressing the CTRL and STOP keys together. You can now use this LIST
action to see what BASIC commands look like.

Suppose, then, that you are looking ata program listing. Whatdo yousee
on the screen? The answer is a set of numbered lines of instructions which
use familiar looking words. These are lines of BASIC, and the numbering is
there as a guide to the computer. Normally, the computer will work on the
lines in order of increasing number. This way, the line numbers show in
which order the computer must carry out the instructions. Another use for
these line numbers. however, is branching. You can include in the program
instructions which force the machine to work on another line. This allows
the program to vary what the machine does. For example, you might want
it to print from a list of names each one whose subscription is due. This
means selecting names, not just printing the whole list. At some point in the
program then, the machine will be instructed to print a name instead of just
moving on to the next name. This is one type of branching action. Another
one is looping. L.ooping means that the machine repeats a set of instructions,
carrying them out over and over again instead of keeping to the strict
number order of the lines. These types of action are very important in

Where Do We Start? 5

computing, and in BASIC, the line numbers are used in the commands
which make the machine carry them out. The line numbers, then, are an
essential part of BASIC. If you type a number, the machine will always take
this to be a line number.

You can’t use the computer in the way that you would use a calculator.
You can’t, for example, type:

26 + 42 =

as you would with a calculator, because the computer is programmed to
take 26 as meaning a line number. Since it 1s not programmed to do any sort
of arithmetic with line numbers, it can’t make any sense of the + 42 = that
follows, so it issues the ‘Syntax error’ message in the hope that you’ll get it
right next time. Once you understand that this is a simple-minded device
and not a pocket genius, you start to find that programming becomes much
easier!

One other thing that will not bother you much at the beginning is
memory. The computer stores all the instructions for a program in its
memory; it also needs to reserve some memory for making notes as it goes
along, and for organising the display on the TV screen. Memory is measured
in units that are called bytes. One byte is the amount of memory that is
needed to store one instruction word, or one letter of any other words.
Because one byte is a small amount of memory, we use the word kilobyte
more often. One kilobyte (shortened to 1K) is 1024 bytes of memory. Many
machines claim to have 64K of memory, and they do, but only a part of this
can be used by you. Normally, if your machine releases 28K or so for you,
there will be enough memory for any program that you are likely to write for
yourself,

Summing it up so far, then, programming means writing instructions
which are broken down into simple steps. These steps make use of a limited
number of keywords, which must be used in the correct way and with the
correct spelling. The keywords are, in turn, arranged in numbered lines, so
that the computer can carry out the instructions in the correct order. From
all this, you'll see that typing is an important part of all this activity, and so
we'll look next at the keyboard on which you have to type all of these
keywords and the other parts of instructions.

The keyboard

Since the keyboard is the way that we enter the instructions of a program
into the computer, we need to take a close look at this vital component. Now
just because all of the MSX machines will run the same programs and can be
programmed in the same way, that doesn’t mean that all the keyboards will
be alike, Some machines will use good-quality keyboards with moving keys
as you would expect in a typewriter. Others may use the flat-pad keys, or the

6 Working with MSX BASIC

calculator-style keys that can save the manufacturer so much money. 1f you
are going to do a lot of programming, or if you intend to use the computer
for anything other than games, a good keyboard is essential. More working
computers are thrown away because of poor keyboards than for any other
reason, and if, like me, you spend a lot of time at the keyboard, you'll
understand why. When you begin computing, you may think that the
keyboard doesn’t matter, but as you move on, you can soon be reminded of
how important a good keyboard is.

When you have the computer ready for programming, you will see on the
screen a marker which is called the cursor. On most machines, this marker
draws attention to itself by flashing. When you press a key which is labelled
with a letter or number or anything else that can be printed, then the place
where it will appear on the screenis marked by this cursor. If you press the A
key, for example, you will see the letter a or A appear where the cursor was,
and the cursor will move one space to the right. When the cursor gets to the
right-hand side of the screen, you don’t have to do anything different. Just
press the next letter that you want, and you will see the letter appear; the
cursor will move to the start of the next line, at the left-hand side. You do not
have to press the RETURN or ENTER key to make this cursor movement
happen. Note that the bottom line of the screen shows the set of keywords
that can be obtained simply by pressing one of the F keys on the top row of
the keyboard. Another set of words appears when you press the SHIFT key,
and this shows what can be entered when the F keys are used along with the
SHIFT key. '

The style of keyboard can vary, and so also can the keys that you find on
it. The main keys, which give the letters, numbers, and punctuation marks,
are the same on all MSX keyboards. On many machines, these keys are ina
lighter colour than the other keys. What can be different, however, is the
other keys that surround these, and so we'll look at the other keys first. The
most important one is the key which on some computers is marked
RETURN, and on others is marked ENTER. A few computers use a
symbol, which is a thick arrow that curls downwards and left. It's the same
key, doing the same job, and is in the same place on any keyboard. It's
placed so that you can hit it with the little finger of your right hand. The
effect of this key is, as you know already, to signal to the computer that you
have finished a command or a reply or a program line, and you now want the
machine to do something about it. The word ENTER is found on some
keyboards because this key will enter what you have typed into the memory.
The word RETURN is used on others because the key is in the position of
the carriage return key of a typewriter. Either way, it helps if this key is

- bigger than the others, providing it doesn’t jam if you hit it off-centre.

After the RETURN/ENTER key, we can look at the others in any order
we like, and the easiest way is to look first at the top row of keys — the row
which contains a set of five keys that are marked with F1,F2... up to F10.
These are called the programmable function keys, and the idea is that you

Where Do We Start? 7

use them to save yourself typing. For example, when you are entering a
program, you may find that you have to use a keyword, or a combination of
keywords, over and over again. Each of these special keys can be
programmed to do this work, so that you need type the word(s) once only.
From then on, you use the programmable function keys for the words that
you have programmed into them. For example, if you find that you need to
keep using the word PRINT, then you could program this into F10, and hit
F10 each time you wanted the word PRINT to appear on the screen. The
words that are assigned to these keys will appear on the bottom line of the
screen, as we've noted already. There’s more about this in Chapter 12.

Staying on the top row, and moving across to the right, you’ll find the
STOP key. This is an important key when you are running a program, or
trying to make one run. Pressing this key once will make the machine stop
running the program; pressing it a second time will allow the machine to
continue. Unlike some computers, the MSX machines can continue just
where they left off when you press this STOP key for the second time. It’s a
very good way of giving you time to take a close look at something on the
screen, for example, without forcing you to start the program all over again
to find out what happens next.

Now this is where different manufacturers have different ideas about
where keys should be placed. To the right of the STOP key, you should find
a group of three or four editing keys. As the name suggests, these are the
keys that you will use when you want to correct something that has gone
wrong in a program. Some manufacturers put these keys on the top line and
some put them in a group on the right-hand side, near the top. They are
often marked as INS, DEL and HOME. INS means [NSert letters, and
DEL means DELete letters. HOME means that you want to be able to type
letters which will be placed starting at the top left-hand side of a blank
screen. There are more details about using these keys also in Chapter 12.

Another key which is useful for correcting mistakes is the backspace key.
It is marked BS by some manufacturers or labelled with a left-pointing
arrow by others. If you press this key the cursor will move one space left on
the screen, and will wipe out the letter that was in that place. It’s a quick and
easy way of correcting a mistake when you have just noticed it, before
pressing the RETURN or ENTER key. On some machines you can get the
cursor to move in the opposite direction, left to right, with a key that is
marked TAB. On other machines this key is marked with a right-pointing
arrow. This key is placed on the left-hand side of the keyboard.

Two other keys on the left-hand side are labelled ESC (or ESCAPE) and
CTRL (or CONTROL). When you first start to learn about programming,
you won’t have much use for these keys, and I'll explain them as we go on.
All of the MSX computers also use two SHIFT keys, one on each side of the
bottom row of letter keys. These work in the same way asthe SHIFT keys of
a typewriter. When you switch on the machine ready to use, pressing a letter
key gives small letters, the type which we call lower-case. To get capital

8 Working with MSX BASIC

letters, or upper-case, you need to press a SHIFT key along with the letter
key. Either SHIFT key will do, and they are placed so that you should
always have a spare finger to press one of them.

After that, it’s every manufacturer for himself. Some machines have a
group of keys on the right-hand side, marked with arrows. These are cursor
control keys, and their effect is to move the cursor up, down, left or right,
according to which key you press. Not all keyboards group these keys
neatly, and you just have to find them for your own particular machine.
Finally, there will be some keys on the same bottom line of the keyboard as
the long spacebar key. The usual group is CAPS, GRAPH and CODE.
Some machines label the CAPS key as CAPS SHIFT. It’s very useful if
there is a light near this key which comes on when the machine is set for
capitals. Whatever it happens to be labelled, its effect is to switch capital
letters on or off. If, as you type, you see lower-case (small) letters appear on
the screen, then pressing CAPS or CAPS SHIFT once will make all of your
typed letters appear in upper-case (capital) letters. You will still have to press
the SHIFT key, however, if you want the symbols which are shown on the
upper part of the number keys, and some of the keys on the right-hand side
of the keyboard. Pressing the CAPS or CAPS LOCK key a second time will
get you back to lower-case letters again.

The CODE and GRAPH keys are less important when you start
programming. They are used like the shift key, but their effect is to provide
you with a completely different set of letters and shapes. The CODE key,
which can be used along with the SHIFT key, provides you with letters
for other European languages, and a set of mathematical symbols, as
you press the keys. Using the GRAPH key, with or without SHIFT, gives
graphical symbols and some more mathematical symbols. These symbols
and letters should be illustrated in the manual which comes with your
computer,

Interpreting and compiling

Computing languages like BASIC can be arranged in two ways. One of
these ways is called interpreted and the other compiled. The BASIC in your
MSX computer is interpreted. This means that the instructions which you
type are held in the memory of the computer as a set of code numbers. When
you run a program, each code number for an instruction has to be
interpreted. This means that the machine has to find what the code means,
and then act on it. Acting on it means that the machine has to locate another
set of codes in its memory, and use these to direct the microprocessor, the
Z-80, which is at the heart of the computer. A language which uses
interpretation is slow, because each command has to be looked up, in turn,
as the computer comes to it. A compiler, by contrast, does the looking up
just once after the program has been written. The instructions are then

Where Do We Start? 9

turned directly into the microprocessor codes. When a compiled program
runs, then, there is no looking up to do, and the speed can be very much
faster.

The language that you are provided with is interpreted BASIC, but if your
MSX computer has enough memory, it is possible to insert a cartridge
which will provide you with a compiled language. This language will be yet
something else to learn, so you may not want to think about it at the
moment. As time goes on, though, you may feel that you need to use a faster-
running language. The great advantage of an MSX computer is thatyouhave
the choice.

Chapter Two
Inputs and Outputs

Chapter | will have broken you in to the idea that the MSX computer, like
practically all computers, takes its orders from you when you type them on
the keyboard. You will also have found that an order is obeyed when the
RETURN or ENTER key is pressed. From now on, we’ll use just the word
RETURN to mean either of these, whatever the key happensto belabelled on
the keyboard. You will also know that you can use the command LIST (then
press RETURN) to print your program instructions on the screen.

There are two other useful points that you need to know before we go
much further. One is that you can clear the screen by pressing the key that is
marked HOME at the same time as the SHIFT key. This also has the effect
of placing the cursor at the top left-hand corner of the screen. The messages
at the bottom of the screen are nor erased in this way, however. You can
obtain the same screen clearing effect by pressing the CTRL key along with
the L key. Pressing CTRL and L together is usually written as CTRL L to
save space. As your familiarity with the computer keyboard increases, you
will want to make use of the editing commands, and these are explained in
Chapter 12.

Now there are two ways in which you can use a computer. One is called
direct mode. Direct mode means that you type acommand, press RETURN,
and the command is carried out at once. This can be useful, but the more
important way of using a computer is in what is called program mode. In
this mode the computer is issued with a set of instructions, with a guide to
the order in which they are to be carried out. A set of instructions like this is
called a program. The difference is important, because the instructions of a
program can be repeated as many times as you like with very little effort on
your part. A direct command, by contrast, will be repeated only if you type
the whole command again and then press RETURN. The set of command
words that can be used, along with the rules for using them, make up what is
called a programming language. which for your computer is MSX BASIC.

Let’s now take a look at the difference between a direct command and a
program instruction. If you want the computer to carry out the direct
command to add two numbers, say 1.6 and 3.2, then you have to type:

print 1.6 + 3.2 (and then press RETURN)

Inputs and Qutputs 11

You have to start with print (or PRINT) or its abbreviation ? because a
computer is a dumb machine and it obeys only a few set instructions. Unless
you use the word print, the computer has no way of telling that what you
want is to see the answer on the screen. It doesn’t recognise instructions like
GIVE ME or WHAT IS; only a few words (about a hundred and forty of
them) that we call its reserved words or instruction words. PRINT is one of
these words. So that you can recognise these reserved words more easily in
this book they will appear in upper-case (capital) letters from now on. You
know by now, however, that you can type them in either upper-case or
lower-case. You will always see them in upper-case when you LIST your
program.

When you press the RETURN key after typing PRINT 1.6 + 3.2, the
screen shows the answer, 4.8, under the command. This answer is not
printed at the extreme left-hand side of the screen; it’s placed one space in,
and the word O.k appears under this answer. The O.k. is a prompt - a
reminder that the computer is ready for another command. Once this
command has been carried out, however, it’s finished.

A program does not work in the same way. A program is typed in, but the
instructions of the program are not carried out when you press the
RETURN key. Instead, the instructions are stored in the memory, ready to
be carried out as and when you want. The computer needs some way of
recognising the difference between your commands and your program
instructions, however. On computers that use BASIC this is done by
starting each program instructions with a number which is called a line
number. This must be a positive whole number - the type of number that is
called a positive integer. We looked at this idea briefly in Chapter 1.

The PRINT instruction, then, is the way that we get the computer to
provide us with information. Apart from some games programs, most
computer uses involve three things; inputs, processes, and outputs. The hard
part about programming is not learning the language of BASIC; it’s
learning how to get what you want from these three actions. For the
moment, we’ll leave inputs aside and concentrate on outputs and a little
processing.

Processing means doing whatever we want to do with numbers or words.
It can be as simple as adding two numbers, or as complicated as putting a set
of names and addresses into alphabetical order of surname. It can mean
producing shapes and colours on the screen and moving them about. It can
mean producing sound, either sound effects or music, to go with the screen
displays. Summing it all up, it means all of the actions that make a computer
so interesting and so useful.

Let’s start programming, then, with the arithmetic actions of add,
subtract, multiply and divide. Computers aren’t used very much for
calculation, but it’s useful to be able to carry out calculations now and again.
In addition, you are much more likely to recognise the sort of instructions
that use numbers than the ones which are used to work with words. Figure

12 Working with MSX BASIC

2.1 shows a four line program which will print some arithmetic results. The
process here consists of four items of arithmetic, each with an output.

1@ PRINTS.6+6.8
20 PRINT?.2-4.7
30 PRINT3.3%3.9
49 PRINT7.6/1.4

Fig. 2.7. A four line arithmetic program.

Take a close look at this because there’s a lot to get used to in these four
lines. To start with, the line numbers are 10, 20, 30, 40 rather than 1,:2,3:4.
This is to allow space for second thoughts. If you decide that you want to
have another instruction between line 10 and line 20, then you can type the
line number 15, or 11 or 12 or any other whole number between 10 and 20,
and follow it with your new instruction. Even though you have entered this
line out of order, the computer will automatically place it in order between
lines 10 and 20. If you number your lines 1,2,3, then there’s no room for
these second thoughts, though you can change line numbers if you have to
by using the editing commands. This idea of having line numbers that goin
tens is so common that it's built into your MSX computer. If you type
AUTO, or press the F2 key, and then press RETURN, you will see the
number 10 appear on the screen. You can then type the first line of your
program. When you press the RETURN key at the end of this first line, the
next line number is automatically selected for you. If you have a line of
program with this number already, an asterisk appears against the line
number. This automatic numbering system can save you a lot of typing!

The next thing to notice is how the number zero on the screen is slashed
across. This is to distinguish it from the letter O. The computer simply
won’t accept the 0 in place of O, nor the O in place of 0; the slashing makes
this difference more obvious to you, so that you are less likely to make
mistakes. The zero that you see on the keyboard may be slashed or not,
depending on the manufacturer of the machine, but it is on a different key
from the O and is differently shaped. Type some zeros and Os on the screen
so that you can see the difference.

Now to more important points. The star or asterisk symbol in line 30 is the
symbol that the MSX computer uses as a multiply sign. Once again, we can’t
use the X that you might normally use for writing multiplication because X
is a letter. There’s no divide sign on the keyboard either, so the MSX
computer, like all other small computers, uses /, the slash sign, in its place.
This is the diagonal line which is on the same key as the question mark, not
the one which slopes the other way and is in a different place on different
MSX computers.

So far, so good. The program is entered by typing it just as youseeit. You
don’t need to leave any space between the line number and the P of PRINT

Inputs and Outputs 13

because the MSX computer will put one in for you when it displays the
program on the screen. You don’t need to leave a space following PRINT
either, and you can type ? in place of PRINT if you wish. The MSX
computer is very tolerant about this sort of thing, so don’t be surprised when
you see a program listing in this book which shows words run together.
There are some places where you must leave spaces, however, and we'll deal
with these as we come to them. Remember that you have only a limited
number of bytes of memory available, and each space uses one of these
bytes. Later on, as you become accustomed to programming, you will find
that you need all the memory you can get. You’ll be glad if your MSX
computer already has around 28000 bytes available, or allows lots of extra
memory to be added.

Getting back to the program example, you will have to press the
RETURN key when you have completed each instruction line before you
type the next line number. You should end up with the program lookingas it
does in Fig. 2.1. When you have entered the program by typing it, it’s stored
in the memory of the computer in the form of a set of code numbers. There
are two things that you need to know now. One is how to check that the
program is actually in the memory; the other is how to make the machine
carry out the instructions of the program.

The first part is dealt with using the command LIST that you know
already. You can use the SHIFT/HOME keys to wipe the screen first if you
like, then type LIST and press the RETURN key. When you press the
RETURN key - and not until - your program will be listed on the screen. An
alternative is to press the F4 key (top row) and then the RETURN key. You
will then see how the computer has printed the items of the program on the
screen, with spaces between the line numbers and the instructions. To make
the program operate you need another command, RUN. Type RUN, then
press the RETURN key, and you will see the instructions carried out. To be
more precise, you will see:

12.4

4.5

12.87
5.4285714285714
O.k.

That last line should give you some idea of how precisely the MSX computer
can carry out its arithmetic. When you follow the instruction word PRINT
with a piece of arithmetic like 2.8 * 4.4, then what is printed is the result of
working out that piece of arithmetic. The program doesn’t print 2.8 * 4 4;
just the result of the action 2.8 * 4.4. You can, incidentally, obtain the whole
RUN (RETURN) action just by pressing the F5 key.

This program has carried out two of the main computer actions - process
and output - for you. The only input has been the program, and we can’t
alter any of these numbers in the program without altering the program

14 Working with MSX BASIC

itself. Try writing a program of this type for yourself, and see how the MSX
computer carries out the calculations and displays the answers. This is all
very useful, but it’s not always convenient to have just a set of answers on the
screen, especially if you have forgotten what the questions were. The MSX
computer allows you to print anything you like on the screen, exactly as you
type it, by using what is called a string.

10 PRINT"2+42="3:2+2

20 F’RINT"2.5*3.5=";2.5*3.5
20 PRINT"9.4—2.2=";9.4—2.2
40 F‘RINT"27.b/2.2="§27.6/2.2

Fig. 2.2. Using quote marks. In this and other examples, the abbreviation ?
was used in place of the PRINT instruction word, but PRINT appears in the
listing.

Figure 2.2 illustrates this principle. In each line some of the typing is
enclosed between quotes (inverted commas) and some is not. Enter this
short program and runit. Can you see how very differently the computer has
treated the instructions? Whatever was enclosed between quotes has been
printed exactly as you typed it. Whatever was not between quotes is worked
out, so that the first line, for example, gives the unsurprising result:

2+2=4

Now there’s nothing automatic about this, If you type a new line:
15 PRINT “24-2=":5%] 5

then you’ll get the daft reply, when you RUN this, of:
2+2=175

The computer does as it’s told and that's what you told it to do. Only a
looney could believe that computers would take over the world!

This is a good point at which to take notice of something else. The line 15
that you added has been fitted into place between lines 10 and 20 — LIST if
you don’t believe it. No matter in what order you type the lines of your
program, the computer will sort them into order of ascending line number
for you. Note also that the computer has put a space between the = and the
number. This doesn’t always happen, though. This space is reserved for a
minus sign, so if we want to make sure that a number with a minus sign is
separated from the = sign, we need to add a space between the = and the
final quote marks. The other important point about this example is that it
shows how to make a program display what is being done. As before, the
command word PRINT has to be used to make things appear on the screen,
but by using quotes we can make the computer print whatever we want, not
Just the results of some arithmetic. Try making the computer print some
answers for yourself, using this form of program.

Inputs and Outputs 15

With all of this accumulated wisdom behind us, we can now start to look
at some other printing actions. PRINT, as far as the MSX computer is
concerned, always means print on to the TV screen. For activating a paper
printer (hard copy it’s called), ther’s a separate instruction LPRINT (and
LLIST for program listings). It’s not an indication of Welsh design — the L
once meant line in the days when computer printers were huge pieces of
machinery that printed a whole line at a time. These instructions are of no
use to you unless you have a printer connected.

19 PRINT“"THIS IS"
20 PRINT"THE FANTASTIC*®
3@ PRINT "MSX COMPUTER"

Fig. 2.3. Using the PRINT instruction to place words on the screen, one line for
each use of PRINT.

Now try the program in Fig. 2.3. Try typing the lines inany order you like
to establish the point that they will be in line number order when you list the
program. When you RUN the program, the words appear on three separate
lines. This is because the instruction PRINT doesn’t just mean print on the
screen. It also means take a new line and start at the left-hand side! You will
also find, incidentally, that when the words on the screen reach the line
above the bottom line, all the lines apart from the bottom one appear to
move up, and the top line disappears. This is the action called scrolling, and
it’s the way that the machine deals with displaying lots of lines on a screen
which holds only 24 lines at one time, counting the bottom line.

In this example the words have been placed between quote marks, and
they have appeared on the screen just as we typed them, but with no quote
marks showing. This, then, is the sort of programming that is needed when
you want to display instructions or other messages on the screen. The real
problem, as you’ll see when you try it, is getting the messages to look really
neat. Nothing looks worse than printing which has split words, with half a
word on one line and the rest on the next line. Even at this stage it’s possible
to make your printing look neat with some care. Type the PRINT* part,
then type the words that you want, and continue typing without touching
the RETURN key until you reach a position on the screen which is directly
underneath the quote mark. If at this point you are in the middle of a word,
then erase this word by using the BACKSPACE (BS) key. Nowtypeasecond
quote mark, and then press RETURN. Start another line now, using
PRINT*, and then type the rest of the message in the same way. If you never
cross the point where a letter comes directly under a quote mark on the line
above, you will never split a word across a line end. Try it!

Now the action of selecting a new line for each PRINT isn’t always
convenient, and we can change the action by using punctuation marks that
we call print modifiers. Start this time by acquiring a new habit. Type NEW
and then press the RETURN key. This clears out the old program. You

16 Working with MISX BASIC

might also like to use the SHIFT/HOME keys to clear the screen. If you
don’t use the NEW action, there’s a chance that you will find lines of old
programs getting in the way of new ones. Each time you type a line you
delete any line that had that same line number in an older program, but if
there is a line number that you don’t use in the new program it will remain
stored. In Fig. 2.3, for example, the line 15 that you added would be left in
store even when you typed a new line 10 and a new line 20.

19 PRINT"This is i
29 PRINT"the great ";
3@ FRINT"MSX system.”

Fig. 2.4. The effect of semicolons on PRINT lines.

Try the program in Fig. 2.4. There’s a very important difference between
Fig. 2.4 and Fig. 2.3, as you'll see when you RUN it. The effect of a
semicolon following the last quote in a line is to prevent the next piece of
printing starting on a new line at the left-hand side. When you RUN this
program, all of the words appear on one line. It would have been much easier
just to have one line of program that read:

10 PRINT “This is the great MSX system.”

to do this, but there are times when you have to use the semicolon to force
two different print items on to the same line. We’ll look at this sort of thing in
later program examples. Meantime, look also at how I have placed a space
between the last letter and the last quote mark in lines 10 and 20. The
semicolon doesn’t just order the computer to prevent a new line being taken;
it also forces it to place one item right up against another. If you left no
spaces, the words ‘is’ and ‘the’ would be printed as ‘isthe’, and ‘great’ and
‘MSX’as ‘greatMSX’. Try removing the spaces and see for yourself. (Turnto
Chapter 12toread howtoeditoutaspaceoranyother characterifyouwantto
avoid having to type the whole line again.)

Rows and columns

Neat printing is a matter of arranging your words and numbers into rows
and columns, so we’ll take a closer look at this particular art now. To start
with, we know already that the instruction PRINT will cause a new line to be
selected, so the action of Fig. 2.5 should not come as too much ofa surprise.
Line 10 contains a novelty, though. in the form of two instructions in one
line. The instructions are separated by a colon (:)and youcan, ifyou like, have
several instructions following one line number in this way. taking several
screen lines. So long as the number of characters in the line does not take up
more than seven lines on the screen, you can put instructions together in this
way. In a multistatement line of this type, the MSX computer will deal with

Inputs and Outputs 17

1% CLS:FPRINT"This is MSX"
20 PRINT:PRINT
3o PRINT"—-ready to work for you.”

Fig. 2.5. Clearing the screen with the CLS instruction, and using
multistatement lines. The two PRINT instructions, with nothing to be printed,
cause two blank lines to appear.

the different instructions in a left to right order. The instruction CLS should
not surprise you either — this clears the screen, and makes the printing start
at the top left-hand corner. It’s the same action as the SHIFT/HOME or
CTRL L keys, but done automatically within the program. Another point
about Fig. 2.5 is that line 20 causes the lines to be spaced apart. The two
PRINT instructions, with nothing to be printed, each cause a blank line to
be taken. There are other ways of doing this, as we’ll see, but as a simple way
of creating a space it’s very handy. Remember that to save typing you can
type 7, and the machine will convert this into PRINT for you! Now try for
yourself a program which will put words on different lines like this.
Remember that you have 23 lines to play with on the full screen.

19 PRINT1,2

20 PRINT1,2,3

3@ PRINT"one", "two"

46 PRINT"one", "two","three”

5@ PRINT"This item is too long”, "two"

Fig. 2.6. How the comma causes words to be placed into two columns.

Figure 2.6 deals with columns. Line 10 is a PRINT instruction that acts on
the numbers | and 2. When these appear on the screen, though, they appear
spaced out just as if the screen had been divided into two columns. The mark
which causes this effect is the comma, and the action is completely
automatic. The comma is on the key next to the letter M, so if you use the
apostrophe on the key next to the semicolon key you will not get the same
effect! The two can sometimes look rather alike on the keyboard, but are
completely different on the screen. As line 20 shows, you can’t get three
columns. Anything that you try to get into a third column will actually
appear in the first column of the next line down. The action works for words
as well as for numbers, as lines 30 and 40 illustrate. When words are being
printed in this way, though, you have to remember that the commas must be
placed outside the quotes. Any commas that are placed inside the quotes will
be printed just as they are and won't cause any spacing effect. You will also
find that if you attempt to put into a column something that is too large to
fit, the long phrase will spill over to the next column, and the next item to be
printed will be at the start of the next line. Line 50 illustrates this - the first
phrase spills over from column I into column 2, and the word ‘two’ is printed
starting at column | on the next line.

18 Working with MSX BAS/IC

Commas are useful when we want a simple way of creating two columns.
A much more flexible method of placing words on the screen exists,
however. This makes use of the command word TAB (short for rabulate) to
position the cursor anywhere along a line, as Fig. 2.7 illustrates. For the
purpose of using TAB, we need to remember that the screen is normally
divided into a grid of 37 divisions across and up to 24 down (Fig. 2.8). By

ie CLS
2@ PRINTTAB(@) "L"3; TAB(36) "R"

32 PRINTTAB(15) "CENTRE"
40 PRINTTAB(S) “Start here...”

Fig. 2.7. How TAB is used to position the cursor.

TAB numbers

% -
Srantwereosraorree2RLNRISENRRBESBIBEERY
IlllIII[]lI]IlllllTl[llIIIlTITIlLlIlllIII

Normal
width
Left-hand X
side _ Width obtained
by using
WIDTH 48
(ENTER)

Fig. 2.8. The TAB map, showing how the TAB numbers are used. You can use
WIDTH to give yourself some extra columns and KEY OFF to gain use of the
bottom line.

normally, I mean when you have switched on the computer and done
nothing to alter the screen arrangement. We will look later on at some
commands which will alter this arrangement. These screen column and line
numbers use a range of 0 to 36 across and 0 to 23 down. When you are
entering programs, however, you can use only 23 lines down the screen, so
that you have to keep to the numbers 0 to 22 rather than 0 to 23. The word
TAB has to be followed by the number of the position, in brackets. If you
omit the brackets, the TAB instruction is ignored. In Fig. 2.7 line 10 clears
the screen and line 20 shows the Left and Right positions on the screen. L
and R have been used rather than printing numbers 0 and 36 because the
number 36 would have to be printed using TAB(34)! Why? Because a
number is printed with a space in front, so the number 36 would take three
spaces; numbers 36, 35, and 34. Line 30 prints the word CENTRE near the
middle of the screen, and we’ll look later at how to calculate the correct TAB
number. Line 40 simply shows TAB being used to indent a line, which means
put a space before the first word on the left-hand side.

Figure 2.9 shows some more secrets of TAB. To TAB across a line you
need to use numbers that lie between 0 and 36, but you can use larger
numbers! These will have the effect of getting you to a different line. It also

Inputs and Outputs 19

1o CLS:PRINT"Top line"

20 PRINTTAB(2)"A"

390 PRINTTAB(S)"TAB(S) "; TAR(3#*37+5)"Th
ree lines down"”

Fig. 2.9. Using numbers greater than 39 for TAB. The number can be in the
form of an expression.

shows that you can use an expression inside the TAB brackets. An
expression is an item of arithmetic that hasto be worked out; in the example
this is 3*3745. The 3*37 part of it means go down to the third line down,
since there are 37 characters in each line. The 5 then tabs across this line to
position 5, so that the phrase Three lines downstartsin thesame TAB position
as TAB (5) above it. There are limits to this, though, because the TAB
command does not allow you to use a number greater than 255. Ifyoutryto
use 256 or any larger number, you’ll get an error message instead. Theerror
message is ‘illegal function call’, which just means that you can’t do that
sort of thing!

Oh, yes, how did I position the word CENTRE at the centre of a line in
Fig. 2.77 This is done by calculating the correct ‘across’ number for the
TAB instruction. The method is shown in Fig. 2.10. You have to count up

1. Count number of characters in the title, including spaces.
2. Subtract this number from 37.

1. Divide the result by 2, ignoring any remainder.

4. Use the result as the TAB number.

Fig. 2.10. The formula for centring a title, assuming the use of 37 columns.

the number of characters that you want to print centred. By characters I
mean letters, digits, spaces and punctuation marks. You then subtract this
from 37 and divide the result by 2. Take the whole number part of the
answer — forget about any half left over - and this is the correct number to
use with TAB. You can then add 37,2*37, 3*37, or whatever you like if you
need to have vertical spacing as well, provided that the number doesn’t go
above 255. Later, you’ll see that we can use letters in place of numbers in the
TAB and other instructions. This allows us to centre words without all the
fuss of counting letters — but that’s more advanced programming than we
should be thinking about at this point! Right now, you might like to work
out how you could display the words MY ADDRESS centred on the
screen, with your address shown neatly printed lower down the screen.
When you have achieved this you will have learned quite a lot about the use
of TAB.

Figure 2.11 shows a different way of spacing out figures and letters on the
screen. This uses the SPC command, and though you might think that it’s

20 Working with MISX BASIC

10 PRINTTAB(2) "MSX"3; TAB(16) "COMPUT ING

20 PRINTTAB(2) "MS5X"3SPC(16) "COMPUTING

Fig. 2.17. Using SPC to space out your printing.

pretty much the same as TAB, its use isn’t. Figure 2.11 shows how it’s used.
When you TAB the numbers, the first letter of each word is placed in the
correct TAB position. Note, incidentally, that you can have more than one
TAB in a line. I have used a semicolon to separate the second TAB, but this
isn’t necessary. In line 20, though, I have used SPC(16). This has the effect
of putting 16 spaces between the end of MSX and the start of
COMPUTING. That’s quite different from having the C of COMPUTING
on the number 16 TAB position. The rule is that you use TAB when you
want neat columns, with the first letter of each word starting in the correct
place. You use SPC if you want to fix the amount of space between words,
even if the words are of different lengths. Not many computers allow you as
much choice as this! Line 20 shows a semicolon between the end of MSX
COMPUTING and the SPC. Once again, this isn’t necessary and you can
omit it. I like to use it because it makes it easier to see where the next part of
the instruction is placed.

Palace of varieties

So far, our computing has been confined to printing numbers and words on
the screen. That’s covered two of the main aims of computing — processing
and output - but we have to look now at some of the actions that take place
before anything is printed. One of these is called assignment. Take a look at
the program in Fig. 2.12. Type it in, run it, and contrast what you see on the

i CLS

20 X=232

30 PRINT"2 times"sX:" is";2%X
49 X=35

59 PRINT"X is now"sX

60 PRINT"and twice X is";2#%X

Fig. 2.12. Assignment in action. The letter X has been used in place of a
number.

screen with what appears in the program. The first line that is printed is line
30. What appears on the screen is:
2 times 23 is 46

but the numbers 23 and 46 don’t appear in line 30! This is because of the way

Inputs and Outputs 21

we have used the letter X as a kind of code for the number 23. The official
name for this type of code is a variable name.

Line 20 assigns the variable name X, giving it the value of 23. Assigns
means that wherever we use X, not enclosed by quotes, the computer will
operate with the number 23 instead. Since X is a single character and 23 has
two digits, that’s a saving of space. It would have been an even greater saving
if we had assigned X differently, perhaps as X=2174.3256, for example.
Line 30 then proves that X is taken to be 23, because wherever X appears not
between quotes, 23 is printed, and the ‘expression’ 2*X is printed as 46.
We're not stuck with X as representing 23 for ever, though. Line 40 assigns X
as being 5, and lines 50 and 60 prove that this change has been made.

That’s why X is called a variable — we can vary whatever it is we want it to
represent. Until we do change it, though, X stays assigned. Even after you
have run the program of Fig. 2.12, providing you haven’t added new lines or
deleted any part of it, typing PRINT X (or PRINTX, or 7X) and pressing
ENTER will show the value of X on the screen.

This very useful way of handling numbers in code form can use a name
which must start with a letter. You can add to that letter another letter or a
digit, but not spaces or punctuation marks, so that N, na, and NS5 are all
names that you can use for number variables, and each can be assigned to a
different number. Just to make it even more useful, you can use similar
names to represent words and phrases also. The difference is that you have
to add a dollar sign ($) to the variable name. If N is a variable name for a
number, then N$ (pronounced en-string or en-dollar) is a variable name for
a word or phrase. The computer treats these two, N and NS$, as being entirely
different.

Serenade for strings

Figure 2.13 illustrates string variables, meaning the use of variable names
for words and phrases. It also illustrates a very different way of placing

1@ CLS:N$="MSX"

20 A%$="Computers"”

3@ B$="rule"

40 C$="0.K."

50 PRINTTAB(17);3N$

69 LOCATE 11,35

76 PRINT"The “sN&i" ";A%

80 LOCATE7,12

99 PRINTNS:" ";A%:;" ";Bs;" ";Cs

Fig. 2.13. Assigning a string variable, along with the use of LOCATE.

things on the screen without using TAB. LOCATE is a command which is
used to control the cursor position. LOCATE has to be followed by up to

22 Working with MSX BASIC

two numbers, and these numbers have to be separated by a comma. Of these
numbers, the first one is just the ordinary TAB number that you have used
already. (You can, in fact, use LOCATE with just one number, and it will
work like TAB. The difference is that TAB musr follow PRINT, but
LOCATE must come before a PRINT instruction.) The second number is a
line number, and you may use numbers between 0 and 22 here. The main
difference between LOCATE and TAB, apart from allowing the use of a
number to select the screen line, is that LOCATE can put the cursor where
you like. If you try to use TAB to move from right to left or up the screen
instead of down, you are doomed to fail. LOCATE, however, will place
words or numbers anywhere you like in any order. You can position words
at the bottom of the screen and then work up, if you fancy that sort of thing.
You can also place new words over old, which can be rather useful, as we’ll
see.

Lines 10 to 40 in Fig. 2.13 carry out the assignment operations, and lines
50 to 90 show how these variable names can be used. Notice that you can
mix a variable name, which doesn’t need quotes around it, with ordinary
text which must be surrounded by quotes. You have to be careful when you
mix these two, because it’s easy to run words together. Note in line 70 how a
space has been left between the ‘e’ of “The’and the quote mark. Ifyou omit this
space, you will see the phrase ‘the MSX’ printed. In line 50, using TAB(17)
centres MSX on the screen. Line 60 then uses LOCATE 11,5. The 11 part
tabulates so that the phrase in line 70 will be centred, and the 5 selects the
sixth line of the screen. Yes, it’s the sixth line, because the top line is
numbered 0, not 1. Notice that lines 70 and 90 have had to use spaces
between the variable names. This has been done by typing a quote, then
pressing the spacebar, then typing another quote.

You can use a string variable name for longer phrases if you like. The limit
to the number of characters that you can assign to a string variable,
however, is 255. Remember that you can type these string variable names as
a$ and b$ and the computer will convert them to upper-case. It won’t
convert anything that you have typed between quotes, though. There
wouldn’t be much point in printing messages in this way if you wanted the
message once only, but when you continually use a phrase in a program, this
is one method of programming it so that you don’t have to keep typing the
phrase!

Now before you go wild on this use of variable names, a word of warning.
There’s nothing to stop you from using names of more than two characters if
you want to. Nothing, that is, except that each letter uses up another byte of
precious memory, and that it can cause confusion. The confusion can arise
in two ways; one because of the ‘case’ of letters, the other because only two
characters are significant. If you assign a variable name of N, the computer
treats N and n as being identical. You can’'t make N=3 and n=2; if you do try
this, only the assignment made most recently will stick. More seriously, if
you decide to use longer names because it makes the action easier to follow,

Inputs and Outputs 23

you can cause trouble. If you have NAME$=“Jack”, for example, you can’t
also have NATURES$=“Sweet”. The computer treats both of these as being
just NAS. It doesn’t bother about any letter following the second, and in this
example, whichever assignment was the later one will be the one that ends
up assigned to NAS.

Getting some input

So far, everything that has been printed on the screen by a program has had
to be placed in the program before it is run. Our programs have just
consisted of a little processing and some output, but with no input apart
from whatever was placed in the program. We don’t have to be stuck with
restrictions like this, however, because the computer allows us another way
of putting information (number or name) into a program while it is running.
A step of this type is called an inpur and the BASIC instruction word that is
used to cause this to happen is also INPUT.

ie CLS

20 LOCATES,Z2:PRINT"What is your name"
3o INPUT NM$

49 LOCATE 3,6

56 PRINT NM$:" —this is your life!™

Fig. 2.14. INPUT used to enter a name and assign it to a string variable.

Figure 2.14 illustrates INPUT with a program that prints your name.
Now I don’t know your name, so I can’t put it into the program beforehand.
What happens when you run this is that the words:

What is your name

are printed on the screen, positioned by the LOCATE instruction in line 20.
On the line below this you will see a question mark. The computer is now
waiting for you to type something and then press RETURN. Until the
RETURN key is pressed the program will hang up at line 30, waiting for
you. If you're honest, you will type your own name and then press
RETURN. You don’t have to put quotes around your name; simply type it
in the form that you wish to see printed. When you press RETURN your
name is assigned to the variable NM$. The program can then continue, so
that line 40 uses LOCATE to move the cursor to screen line 6. Line 50 then
prints the famous phrase with your name at the start. You could, of course,
have answered Mickey Mouse or Donald Duck or anything else that you
pleased. The computer has no way of knowing that either of these is not your
true name. Even if you type nothing and just press RETURN, it will carry on
with no name at all. Don’t listen to the nutters who tell you that computers
know everything! Now that you can type something that can be assigned to a
-variable, and then use the variable later, you can use all three computing

24 Working with MSX BASIC

actions. Could you now design a program that asks for your name, and
assigns it, and then asks for your address, and assigns that? Could you then
arrange it so that it then clears the screen and prints your name and address?
You now know all of the commands that are needed.

We aren’t confined to using string variables along with INPUT. Figure
2.15 illustrates an INPUT step which uses number variables A and B. The
same procedure is used. When the program hangs up with the question mark
appearing, you can type a number and then press the RETURN key. This
time, though, the question mark will appear on the same line as the message.

19 PRINT"Enter a number "3
20 INFPUT A
3@ PRINT"..and another number, please

L]

49 INFUT B
50 FPRINT:PRINT"Product is ";A*B

Fig. 2.15. Assigning numbers with INPUT.

This is because there are semicolons following the PRINT messages in lines
10 and 30. The action of pressing RETURN will assign your number to A
and allow the program to continue. Lines 30 and 40 then get another
number from you, and line 50 proves that the program is dealing with the
numbers that you entered. This is a simple example of the computer used
with input, process and output. The input steps obtain your numbers and
assign them, the process is just multiplication, and the output is the action of
printing the product. You could design a program for yourself which adds
or subtracts or divides numbers to order in this way. When you use a
number variable in an INPUT step, what you have typed when you press
RETURN must be a number. If you attempt to enter a string, the computer
will refuse to accept it. Some computers stop running at this point, but the
MSX computers simply print ‘Redo from start’, and this gives you another
chance to type a number and press RETURN again. If your INPUT step
uses a string variable, then anything that you type will be accepted when you
press RETURN.

The way in which INPUT can be placed in programs can be used to make
it look as if the computer is paying some attention to what you type. Figure
2.16 shows an example ~ but with INPUT used in a different way. This time,

1o CLS

29 INPUT"Type your name, please "iNM$
30 PRINT

49 PRINT"Thank you, "3NM$:"™ _"

S50 PRINT"I’m very pleased to meet you

Fig. 2.716. Using INPUT to print a phrase as well as accepting a string.

Inputs and Qutputs 25

there is a phrase following the INPUT instruction. The phrase is placed
between quotes, and is followed by a semicolon and then the variable name
NMS. This line 20 has the same effect as the two lines:

15 PRINT “Type your name, please ™,
20 INPUT NM$

Again the question mark appears on the same line as the question, and your
reply isalso on the same line - unless the length of your name causes letters to
spill over on to the next line.

The use of INPUT isn’t confined to a single name or number, however.
INPUT can be used with two or more variables, and we can mix variable
types in one INPUT line. Figure 2.17, for example, shows two variables
being used after one INPUT. One of the variables is a string variable NM$;

1a CLS

20 INPUT"Name and number, please “3;NM
$.N

39 PRINT:FRINT

4¢ PRINT"The name is "3;NM$

59 PRINT"The number is "3ih

Fig. 2.17. Using more than one variable with INPUT.

the other is the number variable N. Now when the computer comes to line
20, 1t will print the message and then wait for you to enter both of these
quantities; a name and then a number. There are two ways of entering these
quantities. One way is to type the name, then a comma, and then the
number. Pressing the RETURN key will then assign the two variables in one
operation, and the computer will continue on its way. The other method
consists of entering each quantity separately. If you type the name and then
press RETURN the computer will print rwo question marks on the next
line. This is a symbol meaning ‘more needed’, and that’s a signal for you to
type the number and then press RETURN again. Whichever way vou use,
the name and number will be printed again in lines 40 and 50.

Now suppose that you wanted to write a program that would total sets of
four numbers for you. You could have an INPUT step which used four
variable names. Remember that you can have names like N1, N2, N3, and
N4 if you like. You could write such a program now. Rememberto clear the
screen, and print some sort of message to remind you what to do. You'll
need an INPUT to get the numbers assigned to variables, and then a PRINT
step to say what is being printed and then print the sum of the numbers. Can
you make this look neat? One more point. When you use INPUT, you can’t
type anything which contains a comma because the machine will assume
that this means another variable is being used. If you want an INPUT step to
accept anything that you type, use LINE INPUT in place of INPUT.

26 Working with MSX BASIC

Reading the data

There’s yet another way of entering data into a program while it is running.
This involves reading items from a list, and it uses two instruction words
READ and DATA. The word READ causes the program to select an item
from the list. The list is marked by starting each line of the list with the word
DATA. The items on the list can be separated by commas. Each time an
item is read from such a list a pointer is altered, so that the next time an item
is needed. it will be the next item on the list rather than the one that was read
the last time round.

We'll look at this in more detail in the form of examples later, but for the
moment we can introduce ourselves to the READ...DATA instructions.
Figure 2.18 uses these instructions in a very simple way. Line 20 reads the

1o CLS

20 READ NM$

3@ FPRINTNMS;

40 PRINT"” is valued at “j
50 READ N

690 PRINTN

79 DATA Disk drive, 190

Fig. 2.18. Using READ...DATA to take items in order from a list. There should
be a pound sign immediately before the last quote mark in line 40.

first item on the list and assigns it to the variable NM$. This is printed in line
30, with the semicolon keeping printing in the same line so that the phrasein
line 40 follows it. The semicolon at the end of line 40 once more keeps the
printing in the same line, and line 50 reads the number which is the second
item in the list. This is assigned to the variable name N (we could just as
easily have used NM$) and printed in line 60. This is a good example of why
it is so useful to be able to keep printing in one line with semicolons. You can
print each bit asit is read, and stillend up with a complete line. Note that you
don’t need any quotes around the name in the DATA line 70. You do,
however, have to be careful about how you match your READ and your
DATA. If you use a number variable in the READ, like READ A, then
what is in the DATA line being read must be a number. If you use a string
variable, as in READ A$, then it doesn’t matter whether your DATA line
contains a number or a string. Remember, though, that if you read a number
using READ AS$, then you can’t carry out any arithmetic on that number.
Later on, we'll see how a number in this form can be converted back to
number form so that you can carry out arithmetic.

The READ.. DATA instructions really come into their own when you
have a long list of items that are read by repeating a READ step. These
would be items that you would need every time the program was used, rather
than the items you would type in as replies. We're not quite ready for that
yet, so having introduced the idea, we’ll leave it for now. '

Inputs and Outputs 27

The USING modifiers

The PRINT instruction can be made even more useful by adding the word
USING. This is a more advanced topic, and if you are reading this book for
the first time, it’s just as well to skip the rest of this chapter. You can come
back to it later when you have more experience with placing text and
numbers on the screen.

The thinking behind USING is that you often want numbers or strings to
be arranged in a particular way. We call this formarting, so USING is a
formatting instruction. Suppose, for example, that you were writing a
program which had to calculate the amount of VAT on a price. This means
finding 15 percent of the price and adding on this amount of tax. It’s simple
enough, but what do you do when the result looks silly? For example, the
VAT at 15 percent on a price of £2.13 1s £0.3195. Now you can’t add these to
get £2.4495 and print this as a price. Formatting offers one of several ways to
get rid of this problem. We might, for example, want to print the final price
to two decimal places only, i.e. as £2.45. This is where print formatting
comes into its own. We can use symbols in place of the digits of a numberto
show the computer how we want the number printed. These symbols are
placed into a string, and this string or string name is used following PRINT
USING.

Figure 2.19 shows how this can be used. Line 10 obtains a quantity from
you, and line 20 calculates 15 percent (which is .15) of it. Line 30 assigns C$

1@ INFUT"Price. please "3A
20 B=.15%*A

30 Chs="4#4#.H##"

49 PRINT""3; USING C%;A+H

Fig. 2.19. An illustration of PRINT USING, showing how amounts can be
rounded. There should be a pound sign between the quotes in line 40.

to “##.##”. This means that a number is to be printed with at least two digits
before the decimal point, and only two following. Line 40 then prints the
result. You'll see that if you enter 2.13 as a price, you get the result £2.45. If
you enter a price which uses more than two places of figures before the
point, then the result is printed with a % sign in front. This is just a reminder
that the number is greater than you allowed for. Try altering line 30 to read
CS="“#### ##”, and then see how the result of entering 2.13 is printed. The
spacing is there because you have requested it in the format.

There are many formatting marks that can be used in this way, and your
manual will probably list them all. At the moment, the only other important
one is the one that places a pound sign in the correct place. If you use a
formatting string such as ££###.##, then the effect is to place one pound
sign in front of the number. In this case, no spaces are left, because thisis the
formatting for cheque printing, and you wouldn’t want to leave a space

28 Working with MSX BASIC

between the pound sign and the rest of the numbers. Figure 2.20 shows this
in action. Line 10 shows six hashmarks in the formatting string, but you’ll
see that if you try small amounts in the INPUT line, each sum s printed with
no space between the pound sign and the first number. Now you can start to
design the output stage of that accounts program!

10 CH="###44E. #3#"

2@ INPUT"Sum to be paid, please "“iS
30 X=5+.15%5

49 PRINT:PRINT

5@ PRINT"Please pay "3jUSING C%3X

Fig. 2.20. Putting a pound sign automatically into money amounts. There
should be two pound signs at the start of the string of hash marks.

Chapter Three
Quantities of Numbers

So far, we have looked at how a number can be printed and how it can be
assigned to a variable name. Many uses for computers operate with
numbers (yes, even games programs), and so we have to know something
about how the MSX computer deals with numbers. The more specialised
instructions that are needed by engineering and scientific programs,
however, have been left to the end of this chapter so that you can take them
or leave them. In general, unless your programming is likely to be concerned
with engineering or scientific problems, you can leave them.

We can use numbers in programs in two different ways. One is the use of
numbers as constants. A constant is a number whose value can be putintoa
program at the programming stage and never changed. You might, for
example, be writing a program that deals with VAT at 15 per cent, so that the
number . 15 keeps appearing. The other way of handling numbers is to assign
them to variable names. For most purposes, this is a better way of dealing
with them than the use of constants. There are two reasons for this. The first
is that a variable can be changed easily. Suppose you have a program in
which the amount .15 occurs a dozen times. It’s a lot easier to have a line
which reads T=.15 early in the program, and which uses T rather than .15
each time a calculation is carried out. That way you only have to type T, not
.15, Also if the rate of tax changes (usually meaning increases), then you
only have to alter the line that reads T=.15, notall the placesin the program
where T is used. That's a very great advantage. The other point is one we’re
coming on to; that a variable can often need less memory for storage than a
constant.

MSX machines, unlike most computers, allow you to use three different
types of number variables. At first, when you are fairly new to computing,
the differences do not seem to be very important. Later on, though, you will
find that if you are aware of these differences, you can take advantage of
them to make your programs run more efficiently. The differences concern
the amount of memory that is needed to store each value, the time that the
computer takes to work with each value, and the precision of working with
each value. The three types of variables are integer, real and double-
precision.

30 Working with MSX BASIC

Integer variables

An integer variable is one which uses a name starting with a letter, as usual,
and can have a second letter or digit. It ends with the percent sign %, so that
names like N%, X2%, TT% are all valid integer names. Unlike other number
variables, though, integer variables obey very strict rules. The value that is
assigned to an integer variable must not contain any fractional part. You can
correctly assign A%=S5, for example, but not A%=5.5. If you do use
A%=5.5, then you will find from using PRINT A% that the value which has
actually been assigned is 5! The fraction has been completely ignored. In
addition, integer variables can use only a limited range of values, which can
range from —32768 to +32767. If, for example, you try to assign
A%=—32800 or A%=42000 you will get the message ‘Overflow’ when the
program tries to carry out this command. Overflow means that there isn’t
enough memory to take the number, because an integer number uses very
little memory - less than any other kind of variable. An integer variable
value needs only two bytes of memory for storage, though each integer will,
in fact, use up five bytes of memory. This is because one byte is kept to place
a code for the variable type, and two more are used for the two characters of
the variable name, making a total of five.

Because so little memory is used, any program which can make use of only
integer variables will run faster and take up less memory than a program
which uses the other variable types. If you can be sure that your programs
will use only integer number variables, there are two ways that you can take
advantage of this. One is to remember to place the integer mark, %, after
each number variable name. The other, which is easier when you are usinga
large program, is to define all your integers in advance. You can do this by
using DEFINT. For example, if your program starts with:

10 DEFINT J-N

then any variable name which starts with J, or with K, L, M, or N, will be an
integer. This includes names like N2, JJ, LQ, Kim, and so on. It’s the firs
Jetter that counts here. Very few computers have this useful DEFINT
command nowadays, and only old-timers who used the TRS-80 will
remember it. You can override the action of DEFINT if you like by using
one of the other symbols. For example, even if you have used DEFINT J-N,
you can still assign a number like K1!=101.76. In this case, K1!isa single-
precision or real number, not an integer.

Integers can be used with any arithmetic action, but it’s better to stick to
addition. subtraction and multiplication. The reason is that division, along
with actions like taking square roots, can give results which can contain
fractions. Integer numbers cannot make use of fractions, so something has
to give. Take a look at Fig. 3.1 to illustrate this. The first four lines assign
integer values to integer variable names. Because the first line has used
DEFINT A-Z, all number variables are integer variables. Line 40 has

Quantities of Numbers 31

19 DEFINT A-Z
20 P=435

Jo @=12

490 D=F/Q

S50 PRINTD

6@ PRINTP/Q

Fig. 3.1. Using DEFINT to declare integers and some integer actions.

assigned D as the result of dividing P by Q. Now this result is nor an integer,
so if it is assigned to an integer variable, the fractional part will be ignored, as
line 50 shows when the program runs. The PRINT action, however, is not
the same as assignment, and so the correct value is printed. If you use
division in a program that makes use of integer variables, then, you can
PRINT the result but you can’t be sure that it will be correct if you assign it
to an integer variable. It's surprising how many numbers that you deal with
are integers. The most obvious use is in a count, but integers can be used for
other calculations. If you have a program which deals with small sums of
money, for example, you can convert each amount to pennies and then use
an integer variable. The program will not be able to handle a sum of more
than 32767 pence, which is £327.67, but it can sometimes be quite useful.

Real number variables

A real, or single-precision, number variable can be marked in two different
ways. One way is to make use of the exclamation mark (!) following each
variable name. (Names like A!, BC!, H2! are all valid real number variable
names.) The alternative is to define a range of variable names as single-
precision. This is done by using DEFSNG. For example, DEFSNG A Z
will define all number variables as single-precision, uniess some other mark
is used following the variable name. A variable like this needs a total of seven
bytes to store, of which only four bytes are used for the value. This allows
only six figures of the number to be stored, so if you assign a number which
uses more than 6 figures it will be approximated. For example, if you assign
Al=12345678, this value will be stored as 123457 and 100, meaning that
1234567 will be multiplied by 100 to give the (approximately) correct value.
If you carry out PRINT A!, then the answer will appear as 12345700.
Numbers of this kind, then, are accurate only for values up to 999999 and
down to —999999. You can still get accurate results with numbers like
134000000 because the zeros are not ‘significant’; they are not the part of the
number that is coded into six digits. Similarly, numbers like .00000012 are
stored accurately, because once again, the zeros are not part of the number
that has to be stored in coded form. Many computers use a different form of
coding which allows a larger number of figures, but is not so accurate for
any of the numbers. The MSX system ensures that arithmetic which uses
single-precision numbers will be carried out with complete accuracy if the

32 Working with MSX BASIC

numbers contain six significant figures or less. If you are interested in
number systems, then the technical reason is that MSX computers store
numbers in BCD form rather than in binary fraction form.

Double-precision

A variable name which is unmarked, or which ends with the hash mark (#), or
which has been selected by the use of DEFDBL, is a double-precision
variable. A variable of this type needs a total of eleven bytes for storage, of
which eight bytes are used to contain the number value. This allows
numbers to be stored precisely up to a maximum of fourteen significant
figures. Even if you do not use the # mark or DEFDBL, any number
variable will be stored in double-precision form unless you mark it as an
integer or as a single-precision variable. This is what is called the default
case, meaning that you don’t have to do anything special to have your
variables stored in double-precision. This is why MSX machines produce so
much more accurate results in arithmetic than so many other computers.

The trouble with double-precision, though, is that it takes quite a lot of
memory, and a lot of work for the computer to work with the numbers.
Throughout this book, then, we’ll use only as much precision as we need, so
you will see the use of the % and ! marks in many of the programs. Youshould
really use double-precision only where it is important — for accountancy,
where answers must be exact, and for a few problems in science and
engineering where high precision is essential. Oddly enough, such high
precision is seldom really needed.

Handling numbers

The amount of computing that we shall cover in this book will persuade you
that computers aren’t just about numbers. For some applications, though,
the ability to handle numbers is very important. If you want to use your
computer to solve scientific or engineering problems, for example, then its
ability to handle numbers will be very much more important than if you
bought it for games, for word processing or even for accounts. It’s time,
then, to take a look at the number abilities of MSX computers. It is a
comparatively brief look because we simply don’t have space to explain
what all the mathematical operations do. In general, if you understand what
a mathematical term like sin or tan or exp means, then you will have no
problem using these mathematical functions in your programs. If you don’t
know what these terms mean, then you can simply ignore the parts of this
section that mention them.

The simplest and most fundamental number action is counting. Counting
involves the ideas of incrementing if you are counting up and decrementing

Quantities of Numbers 33

if you are counting down. Incrementing a number means adding one to it;
decrementing means subtracting one from it. These actions are pro-
grammed in a rather confusing-looking way in BASIC, as Fig. 3.2 shows.

19 CLS

20 X=35

392 PRINT"Value of X 1s "3X

49 X=X+1:PRINT

590 PRINT"Now we’ve used X=X+1":PRINT
69 PRINT"The value of X is "3X

Fig. 3.2. Incrementing, using the equals sign to mean becomes.

Line 20 sets the value of variable X as 5. This is printed in line 30, but then
line 40 increments X. This is done using the odd-looking instruction X = X
+ 1, meaning that the new value that is assigned to X is one more than its
previous value. The rest of the program proves that this action of
incrementing the value of X has been carried out.

The use of the = sign to mean becomes is something that you have to get
accustomed to. When the same variable name is used on each side of the
equality sign, this is the use that we are making of it. We could equally well
have a line:

X=X-1

and this would have the effect of making the new value of X one less than the
old value; X has been decremenied this time. We could also use X = 2*X to
produce a new value of X equal to double the old value, or X = X/3 to
produce a new value of X equal to the old value divided by three. Figure 3.3
shows another assignment of this type, in which both a multiplication and
an addition are used to change the value of X.

1@ CLS

20 X=S5:PRINT"X is now "“3iX
3o PRINT

49 X=2%#X+4

5@ PRINT"It’s changed—"
69 PRINT"X is now "3X

Fig. 3.3. A more elaborate reassignment using an expression.
Number operations

An operation means some action that is carried out on the value of a
variable. For example, if variable X has been assigned with a value, then
2*X is an operation; the operation of multiplying the value of X by two.
Similarly, X—1, X/2and X+3are all operations which are carried out on the
value of X. Another important operation often carried out on numbers is

34 Working with MSX BASIC

raising to a power (also called exponentiation). The N symbol is used by
MSX machines for this purpose, so that 5/ 2 means five to the power of two,
or five squared, and its value is 25. To take another example, 3/ 3isthree to
the power of three, or three cubed, whose value is 27. You can use fractional
or negative powers in this way. The meaning of a fractional power is a root,
so that 4/ (1/2) means the square root of four, and 27/ (1/3) means the cube
root of 27. We make use of square roots so often that a special operator
SQR can be used in place of 2.5, so that you can type SQR(4) in place of
475 or 47(1/2). The result, whether you use PRINT SQR(N) or
X=SQR(N) will be a double-precision number. A negative power means the
inverse of the power of the number, so that 5A—2 means one over five
squared, which is 1/25, and 3A—3 means one over three cubed, which is
1/27. A less obvious operation is X=—2X. This means that the value of X is to
be made negative. If X had the value of +5, then the action of X=—X would
make X equal to —5; if X had the value of =5, then X=—X would make the
value +5. This operation 1is called negation, or unary minus.

These operations can be carried out on numbers, or on variables which
have been assigned to number values. Number operations cannot be carried
out on string variables, however. Figure 3.4 lists the operations which are of

Order of priority
For ordinary arithmetic, order of priority is MDAS - multiplication and
division, followed by addition and subtraction. The full order of priority is:

Raising to a power, using

L

2. Multiplication and division
3. Addition and subtraction
4. Comparison, using = <>
5. AND

6. OR

7. NOT

Fig. 3.4. The simpler number operations in order of precedence.

importance to you at this stage. These operations are given in order of
precedence, and this is the next subject that we have to devote some
attention to before leaving the subject of number operations.

When we deal with one operation at a time, programmed in separate lines,
the order in which operations are carried out is strictly the order of the line
numbers. For example, if you program:

10 X=12.5
20Y=2.4*X
30Z=Y—4

Quantities of Numbers 35

then the order of actions is assignment, then multiplication, and then
subtraction. It may not be so easy to see what would happen if you
programmed Z=24*X—4. As it happens, this gives the same answer,
because X is multiplied by 2.4 and then 4 is subtracted. You could imagine,
however, that the command could be interpreted as subtracting 4 from X
and then multiplying the result by 2.4. Take another example — what would
you expect to be the result of:

5.4-2.2*3+4.6/1.5-2.2*1.2

If your reply is —.7733333333333, then you have taken the numbers in the
correct groupings. You do not carry out the operations in the order in which
they are written. Instead, you carry them out in the order of precedence,
which is multiplication, division, addition and subtraction; MDAS if you
need a short way of remembering it. What this means is that multiplication
and division steps are a/lways carried out first, followed by the addition and
subtraction steps. The computer will always use this order of precedence
unless you override it by the use of brackets. Figure 3.5 shows the full order
of precedence including unary minus and exponentiation operations. Note
that the equality = has quite a low order of precedence.

1. Anything that is enclosed in brackets. Innermost brackets have highest
precedence.

2. Functions, such as SQR, SIN, LOG.
3. Raising to a power, using /.

4, Negation - use of the negative sign.
S. Multiplication and division.

6. Integer division using \.

7. Remainder using MOD.

8. Addition and subtraction.

9. Comparison, using = <.

10. NOT.

11. AND.

12. OR.

13. XOR.

14. EQV.

15. IMP.

Nore: XOR is seldom used, and EQV and IMP even less.

Fig. 3.5. The full order of precedence for all number operations.

There are often times when you want to impose an order of precedence
which is not the same as the machine’s. For example, you may want to
subtract 4 from the value of X and then multiply by 2. If you programmed
this as 2*X—4 you would not achieve this, because the order of precedence
would ensure that the value of X was multiplied by 2 before the number 4

36 Working with MSX BASIC

was subtracted. Similarly, if you typed X—4*2, the computer would multiply
4 by 2, giving 8, before subtracting this value from the value of X. If you
want to make the computer carry out a subtraction before a multiplication
you have to enclose the subtraction in brackets. By typing (X—4)*2, you
force the operation of X—4 to be carried out first and the multiplication
second. This is because the use of brackets has a higher order of precedence
than multiplication. Whatever you have placed within the brackets will be
carried out in normal order of precedence. For example, if you have:

(5-1.2*X)—~(4+1.6) Y)

the order of actions will be to work out the contents of the brackets first, in
normal precedence. The value of X will be multiplied by 1.2, and this result
will be subtracted from 5. The value 1.6 will be divided by the value of Y, and
4 will be added. The value of the result of the second bracket will then be
subtracted from the value of the result of the first bracket to obtain the final
result. When one set of brackets is contained inside another (nested
brackets), then whatever is enclosed in the innermost brackets will be carried
out first. When this has been done the action of the outer brackets will be
executed, and following that, anything that was placed outside all the
brackets. This order of precedence of brackets applies to all operations, not
just number operations, as we shall see illustrated later when we deal with
strings.

Formula translation

The first uses of computers were for solving equations, and one of the first
useful computing languages was FORTRAN, an abbreviation of FORmula
TRANslation. FORTRAN is still used to some extent in mainframe
computers, but BASIC is just as capable of working with formulae, and
many other computing languages have been devised with similar
capabilities. If all you wanted to do was to work out one single answer from
a formula, then a calculator would be the quickest and most obvious
method. Where the computer becomes essential is when the formula is a
large and tedious one, and a very large number of answers have to be worked
out.

Take a simple example first, Fig. 3.6. The quantities A and B represent
the lengths of the short sides of a right-angled triangle (remember
Pythagoras?) and C represents the length of the long side. These sizes are
strictly related by the formula which states that C squared equals A squared
plus B squared. The value of C is thus found by taking the square root of
each side of the equation, so that C is equal to the square root of A squared
added to B squared. Suppose that we have assigned number values to
variables A and B, how do we type a line which will give the value of C?

The important thing to remember is precedence. The square root action

Quantities of Numbers 37

Side C
Side A

90°

————Gjde B————

Whatever the size of the triangle:

C2= A2+ B2
so that C = +\/A2+ B2

This is programmed as C = SQR(A"2+B"2)

Fig. 3.6. The right-angled triangle formula and how to program it.

will always take precedence over addition, so that if we program this as:
C=SQR(A"2)+BA"2

the value of A will be squared and then rooted (leaving it unchanged) and
added to the value of B squared. This is not what we want. What we have to
do is carry out the addition of the squares completely within brackets, and
have the SQR preceding the brackets:

C=SQR(AN2+B"?2)

The squaring is thus carried out first, then the addition, and finally the
square root action.

Formula translation will very often include the use of trigonometrical
quantities such as the SIN, COS and TAN of angles. It is important to
remember that these trigonometrical actions will have very high precedence,
so that a number value for a SIN, COS or TAN will be found even before
anything else inside a bracket is worked out. SIN, COS, TAN, and all of the
others are called functions of angles, meaning that they are a method of
finding a value for a number. The computer uses many of these functions,
each of which is said to ‘return a number’. By this, we mean that the result of
the action will always be a number if the function has been used correctly.
MSX computers, in common with others, assume that the values of angles

38 Working with MSX BASIC

will be in units of radians, and Fig. 3.7 shows the relationship between
radians and the more commonly used degrees for angular measure. MSX
machines have no built-in converter for obtaining radian values from
degrees, or degrees from radians.

The exact equivalence between degrees and radians is that 180 degrees are equal to
PI radians. If we take Pl as approximately 3.14, then one radian is about 57.3
degrees, and one degree 1s about 0.017 radians.

For program use, it’s best to define a variable PI'=3.14159. You can then use
several common angle values in radians as follows:

Degrees Radians

30 PI!/6
45 Pll/4
60 PI!/3
90 PI!/2
180 PI!

Fig. 3.7. Converting between degrees and radians.

Number functions

Figure 3.8 illustrates the use of some of these number functions. A number
function in this sense is an instruction which operates on a number to
produce another number. Line 10 picks the value of 2.5 for X. Line 20 then

19 CLS: X=2.5

2@ PRINT"X squared is "3X°2

30 PRINT

49 PRINT"Its square root is “3iSER(X)
50 PRINT

60 PRINT"Its natural log. is "3L0OG(X)
79 PRINT"..and its ordinary log. is "
sLOG(X) /72.303

Fig. 3.8. Using some number functions.

prints the value of X squared, meaning X multiplied by X. This is
programmed by typing X/ 2; the character which MSX computers use for
this is on the 6 key. To obtain the square root of the number that has been
assigned to X we use the instruction word SQR. An alternative is X/ .5, but
SQR(X) is easier to type and remember. For other roots, like the cube root,
you can use expressions like XA (1/3) and so on. LOG(X) produces the
natural logarithm of X. This is not the type of logarithm that you may want,

Quantities of Numbers 39

and to find the ordinary (base 10) log you have to divide this result by 2.303.
This needs some other alterations if you are working with the logarithms of
fractions, but you’ll have to consult a mathematics textbook for that one;
there isn’t room here.

Figure 3.9 illustrates the various number functions that can be used, with

ABS (X) Converts negative sign to positive

ATN (X) Gives angle (in radians) whose tangent is X

CINT(X) Converts X to an integer

CDBL (X) Converts X to a double-precision number

COS (X) Gives the cosine of angle X (radians)

CSNG (X) Converts x to a single-precision number

EXP (X) Gives the value of e to the power X

FIX (X) Strips fraction from X

FRE (X) Gives amount of memory not in use or reserved

INT (X) Gives the whole-number part of X

LOG (X) Gives the natural logarithm of X

RND (X) Gives a random fraction between 0 and 1

SGN (X) Gives the sign of X. The result is +1 if X is positive, —1 if X is
negative, 0 if X is zero

SIN (X) Gives the sine of angle X (radians)

SQR (X) Gives the square root of X

TAN (X) Gives the value of the tangent of angle X (radians)

Fig. 3.9. Number functions, with brief notes. Don’t worry if you don’t know
what some of these do. If you don’t know, you probably don’t need them!

a brief explanation of what each one does. Some of these actions will be of
use only if you are interested in programming for scientific, technical or
statistical purposes. Others, however, are useful in unexpected places, such
as in graphics programs. We’ll look at a few of them now, though, because
they will be used in many of the program examples that follow. RND is a
function that is particularly important in many games and graphics
programs. RND means random, and if you assign X=RND(1), then what
you get is a number which has been picked at random, and which is
something between 0 and 1. It will never be quite zero, or quite 1, however.
The main thing when RND is used, is to ensure that it does not produce the
same sequence of numbers each time the program runs. This is because the
number is calculated from a starting number which is called a seed.
Normally the seed will be the same each time a program runs. To get round
this, make one of the early instructions in a program X=RND(—TIME),
and this will have the effect of setting a different seed each time you use the
program.

Another function that comes in useful here is INT. INT causes only the

40 Working with MSX BASIC

integer part (the whole-number part) of a number to be used. It's a way of
chopping off fractions, and it’s very often used along with RND. For
example, suppose you want a random number which lies between 1 and 10.
The method of obtaining this is:

X%=INT(RND(1)*¥10+1)

The RND part will generate something greater than 0 and less than 1.
Multiplying by 10 will give something which can take values from less than |
to less than 10. Adding 1 gives a range of just over | to less than 11. Taking
INT then gives a range of 1 to 10.

SGN is a function that can return —1,0, or +1. It is used in the form
X%—=SGN(Y). If Y is negative, then X% will be —1. If Y is positive, X% will
be +1. If Y is zero, then X% is also zero. It’s a good way of finding out what
the sign of a number is. You might, for example, want a routine that rejects
negative numbers, perhaps because you want to take square roots.

Defined functions

The predefined or intrinsic functions such as SIN, COS and TAN, which are
programmed into the MSX machines, are often all that will be needed to
solve an equation. A few machines, including all MSX machines, allow an
extension of the use of functions, which is the creation of a new function
from existing ones. This is a particularly useful way of programming a
formula, and it is known as the user-defined function.

A user-defined function is particularly helpful in a program which makes
much use of an action. Suppose, for example, that we frequently need to
find the root of the sum of squares in a program. Instead of programming
C=SQR(AN2+BA2)each time, we can define a function of our own, which
will be called RT. If we want to find the root of the sum of AA2and BA2,
then all we need to do is use the function RT. This is done in the form FN
RT(A,B). The FN part is used to indicate to the computer that a defined
function is to be used. RT indicates which (of possibly more than one)
function is to be used, and A and B are the numbers (or parameters) which
the function will need to use. The important thing about a defined function
as used in the MSX machines, is that you are not confined to the use of
variable names A and B. Your variables could be X and Y, or P and Q; any
pair of variable names that you like. The only condition is that both
variables must have been assigned with number values before the defined
function is called into use. By making use of a defined function, then, a
formula need be typed once only, and then subsequently used in a program
by making use of a function name such as RT. You must be sure that the
name which you pick is not the name of an existing function such as SIN,
COS, TAN etc.

Figure 3.10 shows a very simple example of a defined functionin use. Line

Quantities of Numbers 41

16 CLS

206 DEF FNRT (N)=S@R (N)

30 INPUT “Number, please ":@4

49 PRINT“Its square root is "IFNRT (A

50 GOTOD 3@
Fig. 3.10. Using a defined function, FNRT.

20 starts with DEF to indicate to the computer that this is the definition of
the function. This is followed by the name of the function, FNRT, and the
parameter name which will be used, N in this example. This definition of
what ENRT is must be made before the function is used. Some machines
allow such a definition to be put at the end of a program, but for MSX
machines you must place it near the start. Line 30 then asks you for a
number, and line 40 prints the value of the square root of this number. This
is because FNRT was defined as SQR(N), the square root of anumber. The
important point here is that the definition in line 20 uses a variable N, but
when we use the function the variable name is A. This is a very important
point about defined functions, and one which makes them very useful. If the
function were able to make use of only the variable name N, then any other
variable value that we wanted to use would have to be reassigned. For
example, if our value were held as variable X, we would need a line such as:

1000 N=X

before we could find the root value. Using the form of defined function that
MSX computers permit avoids this extra action, which is called passing
variable values. The action of finding roots repeats, because of the GOTO 30
command in line 50. This ensures that the lines 30 to 50 are repeated until
vou press the CTRL and STOP keys together.

Now look at another slightly more complicated defined function in Fig.
3.11. This time, the defined function works out the square root of the sum of

1o CLS
290 DEF FNHYPOT (A, B)=5SGR (A"2+B"2)

39 INPUT "Two numbers., please “;X_.Y.
49 PRINT"Third side is "3FNHYPOT(X.Y)
5@ GOTO 3@

Fig. 3.77. Another defined function, this time using two quantities
(parameters).

two squares, using two numbers which in line 20 are referred to as variable
names A and B. Line 20 also gives the definition of the function as equal to
SQR(AN2+BA2), the familiar root of the sum of the squares. The
definition of the function musz be completed in one line. In line 30, two
numbers are asked for. When you type the two numbers and use RETURN,
the next line will print the value of the root of the sum of the squares. Note

42 Working with MSX BASIC

once again that the numbers are represented by variable names X and Y, and
we can ‘call’ the function by using FNHYPOT(X,Y), even though the
definition used variable names A and B. The use of a defined function is a
very useful way of making the computer carry out the actions of applying a
formula to a set of numbers. The numbers are assigned to variable names,
and then put into the defined function formula by using an instruction such
as FNformula(A,B,C,D), using as many variables as you need numbers to
put into the formula. The only thing you have to watch is that you use the
correct number of variables. If your DEF FNformula uses four variables,
then your FNformula must also use four - no more, no less.

Tests and approximations

When you make use of number functions in formulae, or to create defined
functions, you always have to be careful about approximations. If youdon’t
mark number variables with a ! or % sign, then you will be working with
double-precision numbers, and the accuracy will be very good indeed,
certainly good enough for all but the most exacting requirements. What you
have to watch, though, is that the formula is correct and that you have
programmed it correctly. If you have spelt an instruction word wrongly or
used it in the wrong way, you will get a ‘Syntax error’ message when the
program runs. If you have made a mistake in programming the formula, but
have used the instruction words correctly, there will be no error messages.
The answers, however, will be wrong! You won’t know this unless you test
the program using numbers that will produce an answer that you know. For
example, if you are testing a defined function for the root of the sum of
squares, you would test with numbers like 3 and 4, or 5 and 12. The result
from 3 and 4 should be 5, and if you get 4.999999999999, something is not
correct. The MSX computer should not approximate numbers of this size.
Similarly, if the result is a long way out, there has to be something wrong in
the programming. Testing like this is very important if the formula is a
complicated one, because if you can’t rely on the computer to give correct
results there isn’t much point in using a computer!

Number arrays

So far, we’ve looked at variable names for numbers with the idea that we
might be using just a few numbers in our programs. Suppose that we want to
use hundreds of numbers, though? Just to give an example, suppose we are
keeping records of the amounts of money paid into a Christmas Club fund.
There might be a couple of hundred members of the Club, each one
contributing a different amount. How do you keep records of this? You
can’t very well use a different variable name, like A, B, C ... for each

Quantities of Numbers 43

member. This would use up too many letters, and you would find it difficult
to keep track of the variable names. An application like this requires a rather
different use of a number variable.

This new use is a number array. A number array just means a set of
numbers that you want to keep together as a set. Examples such as
Christmas Club payments, subscriptions, examination marks, scores in
league matches, are all numbers that belong to a set. The computer allows
you to use just one variable name for a set like this. You then distinguish
between one item and the next by using a ‘reference number’, which is called
a subscript. The subscript number follows the variable name, within
brackets. For example, you might want to use the variable name of Sb for
subscriptions to a Club. The first member’s subscription is assigned to
variable Sb(1) (called ess-bee of one), the next to Sb(2) (ess-bee of two) and
so on. The important point is that the number - 1, 2, or whatever — can be a
number variable. We can refer to Sb(X), and make X equal whatever we
like. If you want to find what member number 27 paid this year, just make
X=27 and PRINT Sb(X), and it’s on your screen!

This very different way of handling numbers in lists is something that we’ll
come back to. The reason is that arrays are best handled by a program that
allows actions to be repeated, and we’re not at this stage yet. Watch out for
more in Chapter 5!

Chapter Four
Strings Attached

In Chapter 3, we took a look at number functions. If numbers turn you on,
that’s fine, but string functions are in many ways more interesting. What
makes them so is that the really eyecatching and fascinating actions that the
computer can carry out are so often done using string functions. A string
means any collection of up to 255 characters - the sort of thing that we put
between quotes in a PRINT action, or assign to a string variable name like
AS, or BC$. What’s a string function, then? As far as we are concerned, a
string function is any action that can be carried out with strings. That
definition doesn’t exactly help you, I know, so let’s look at an example, in
Fig. 4.1.

10 CLS

20 A$="DNE"

3@ B$="TwWO"

40 PRINTAS+B$

50 As="12":B$="34"
60 C$=A%+B$

7@ PRINTCS

Fig. 4.1. Assigning and concatenating (joining) strings. This is not the same
action as addition of numbers.

This shows two strings, A$ and B$, being assigned in lines 20 and 30. AS is
assigned to “ONE” and BS to “TWO” - remember that you must use quotes
in an assignment like this. Line 40 shows what you get for A$+BS$. What is
printed on the screen is ONETWO; the two strings run together. The + sign,
then, is a kind of operator for strings, but the operation is not addition in the
way that we add numbers. To distinguish it, this use s called concatenation.
The rest of the program shows that concatenation works in the same way
even if the strings are of number quantities. If you PRINT A$ or PRINT B$
after line 50 has been run, you will see 12 for A§ and 34 for BS, but C$ is
1234, not 46. The + is not an addition sign as far as strings are concerned; it
is a joining sign. Concatenation can be useful if you have carried out actions
on two different strings and you then want to join them. Suppose, for

Strings Attached 45

example, that you have a mailinglist program, and to save on memory space
you allow names of up to ten characters only. When a name is entered, you
don’t chop off all the characters after the tenth. This would result in
JONATHAN MILKMAN being chopped to JONATHAN M because the
space counts as a character. The more sensible method is to separate the
surname from the forename, and chop each to ten characters. Both parts of
JONATHAN MILKMAN then can be joined again. If the surname is long,
as with SILAS PREPONDERANCE, then the name appears as SILAS
PREPONDERA, which is enough to recognise it.

Now for some other string functions. Figure 4.2 shows a program that
prints MSX COMPUTER as a title. What makes it more eyecatching is the
fact that the word is printed with twelve asterisks on each side. The asterisks
are produced by a string function whose instruction word is STRINGS.

16 REM Remember CLEAR!

20 CLS

39 AS=STRINGS (12, "*")

49 PRINTTAB(1)As$+"MSX COMPUTER"+A$

Fig. 4.2. Using concatenation to make a frame of asterisks for a title.

STRINGS$ means make a string out of, and it has to be followed by two
items placed within brackets and separated by a comma. The first of these
items is the number of identical characters that you want to put into this
string. The second item is the character itself. In this example, we’ve used the
* character, and it has had to be placed between quotes.

STRINGS is a useful way of creating strings of one character, and it’s
particularly useful when we come to look at graphics characters. There are,
however, strings attached, as it were. One is string space. When your MSX
computer is switched on, it reserves a small amount of memory for storing
strings. The amount is fairly small, only enough for 200 characters, because
a surprising number of programs will use less than this. When you use the
STRINGS instruction a great deal, however, you can bite deeply into this
small allocation, and this will cause your program to stop with an error
message when the allocation is used up. The message is ‘Out of string space
in 30’, and it requires you to reserve more space and try again. You can
reserve more string space by the CLEAR instruction, which is hinted at in
line 10 of Fig. 4.2. By using CLEAR 300, for example, we would reserve
enough memory for 300 string characters. We don’t need this much for this
program, but it’s as well to be on the safe side. Incidentally, this works both
ways. If your program uses no string space at all, you could type CLEAR 0
at the beginning, and so get a little more memory space for other things.

There are two more points about the use of STRINGS. The first is that
you can’t create a string of more than 255 characters, so the first numberin a
STRINGS expression has to be 255 or less. If you attempt to use a larger
number you will get the ‘Illegal function call’ error message. The other point

46 Working with MSX BASIC

about STRINGS is that the second item in the brackets can be a number,
with no quotes. Each character used by the MSX computer is represented by
a code number, using what we call ASCII code. The letters stand for
American Standard Code for Information Interchange, and the ASCII
(pronounced Askey) code is one that is used by most computers. Figure 4.3

32 33 ¢+ 34 " 35 #36 %
37 %4 38 & 3I9 40 (41)
42 * 43 + 44 , 45 - 46 .

47 / 48 o 49 1 56 2 51 3
52 4 593 5 54 6 59 7 56 8

57 9 58 = 59 60 < 61 =

we

62 > 63 72 64 @ 65 A 66 B
67 C 68 D 69 E 7 F 71 6
72 H 73 I 74 J 73 K 76 L
77 M 78 N 79 O ge P 81 @Q
82 R 83 S 84 T 85 U8B V
87 W 88 X 89 Y 90 7 91 L[
92 \ 9 1 94 - 95 96 -

97 a 98 b 99 c 100 d 101 e
102 f 103 g 104 h 1065 i 106 j
167 k 168 1 109 m 1106 n 111 o
112 p 11X g 114 r 115 s 116 t
117 u 118 v 119 w 120 x 121 vy

122 z 123 { 124

[
N
(4]
[

126 ™

127 W

Fig. 4.3. The standard ASCIl code numbers.

shows a printout of the ASCII code numbers and the characters that they
produce on my printer (Epson RX-80). In place of the asterisk we used
between quotes in Fig. 4.2, then, we could have used the number 42, making
the instruction into STRING$(12,42), which is shorter.

The number characters of normal ASCII code extend only from 32 to

Strings Attached 47

127. The code numbers above 127 are used by the MSX computer for other
purposes, and we can select how we make use of them. Figure 4.4 gives a
flavour of this; it is something that we’ll investigate in much more detail in
Chapter 7. By using the number 215 in the STRINGS$ command in line 20,

19 CLS
20 AF=STRING$(12,215)
390 PRINTTAB(1)A%$+"MSX COMPUTER"+A$

Fig. 4.4. Using other ASCII codes.

we select a chequer pattern rather than a letter character. This same pattern
can be typed by pressing the SHIFT, GRAPH and the P keys together. The
effect is to produce a more effective looking frame for the name this time.

The long and the short of it

String variables allow us to carry out many operations that can’t be done
with number variables. One of these operations is finding out how many
characters are contained in a string. Since a string can contain up to 255
characters, an automatic method of counting them is rather useful, and
LEN is that method. LEN has to be followed by the name of the string
variable, within brackets, and the result of using LEN is always a number so
we can print it or assign it to a number variable. Since the number is always
an integer, it should be assigned to an integer variable unless the program is
a very short and simple one.

Figure 4.5 shows a useful example of LEN in use. This program uses LEN

10 T$="MS5X Computing"

290 TB=(37-LEN(T%))/2

39 CLS:PRINTTAB(TB) TS

49 REM Now print your text.

Fig. 4.5. Using LEN to print titles centred.

as a way of printing a string called T$ centred on a line. This is an extremely
useful routine to use in your own programs because it can save you a lot of
tedious counting when you write your programs. The principle is to use
LEN to find out how any characters are present in the string T$. This
number is subtracted from 37, and the result is then divided by two. If the
number of characters in the string is an even number, the number TB will
contain a .5, but this is completely ignored by TAB when the string is
printed. Note how brackets have been used in line 20. The easiest way of
writing a line like this is to start at the innermost brackets. For example, you
know that you need to find the length of the string, T$, so you write

48 Working with MSX BASIC

LEN(TS) first. You have to subtract this from 37, so you then add this item,
to get 37 — LEN(TS). The whole of this, not just LEN(TS$), must be divided
by two, so you must place brackets around it, to get (37-LEN(TS$))/2, which
is then assigned to TB. You will find that this ‘inside to outside’ approach
pays off when you have to work with lots of brackets. If you are uncertain
about using brackets, be thankful that you are programming in BASIC, and
not in the language called LISP! The whole process of centring could be
done in one line, but I have shown it in three lines so that you can see the
steps. In Chapter 6 we'll look at ways of rewriting actions like this so that
they can be called up when we want them, just like another instruction word.

By the left, slice!

The next group of string operations that we’re going to look at is called
slicing operations. The result of slicing a string is another string — a piece
copied from the longer string. Note that thisis a copying process — nothing is
removed from the longer string when the copy is made. The piece that is
copied can be printed or assigned as you please. String slicing is a useful way
of finding what letters or other characters are present at different placesina
string.

All this might not sound terribly interesting, so take a look at Fig. 4.6. The

16 CLS

20 As="Middlesex"

30 B$="Sugical®

40 Cs="X-Ray Unit"

S50 S$=SPACE$(1)

60 PRINTA$+S$+B$+S%+C$

70 PRINT:PRINTLEFTS(AS,1)+LEFTS(B$,1)
+LEFT$(C$,1)+" Computing."”

Fig. 4.6. Using SPACE$ to make a space of the correct size, along with the
string slicing action LEFT$.

strings A$, B$ and C$ are assigned in lines 20, 30 and 40. There’s a new
instruction in line 50, in the form of SPACES. SPACES$ isa way of assigning
a string which consists of spaces; as many as the number enclosed in the
brackets. It’s a simple and useful way of creating spaces, which saves having
to use lines like:

100 SP$=* ~

which are not easy to follow because you have to count the number of spaces
for yourself. In this example, line 50 assigns just one space to the variable S$,
so that we can use it to space words. Line 60 then prints a phrase on the
screen and line 70 prints some slices from A$, B$ and C$ on the screen. Now

Strings Attached 49

how did the letters MSX appear? The instruction LEFT$ means copy part
of a string starting at the left-hand side. LEFT$ has to be followed by two
quantities within brackets and separated by a comma. The first of these
quantities is the variable name for the string that we want to slice, AS$ in the
first example. The second is the number of characters that we want to slice
(copy, in fact) from the left-hand side. The effect of LEFT$(AS$,1) is
therefore to copy the first letter from Middlesex, giving M. The next
LEFTS$(BS,1) copies the S from Surgical, and the last slice action of line 70
adds the X from X-Ray Unit. The last part of line 70 then adds the word
Computing to these letters. How about trying for yourself a program which
asks for your forename and surname, and then prints your initials?

You aren’t confined to printing or assigning just one letter, of course.
Suppose that you are working on a mailing list program for the local Darts
Club. The names and addresses which are printed on the letters will be
complete, but to save your typing finger(s), you want to be able to list the
names on the screen using just the first five letters. You can then command
the computer to find an address by just typing the first five letters of the
surname. The part of this problem that we can solve easily now is the first
five letters bit. Figure 4.7 shows how this is arranged. Line 20 asks for a

1o CLS

29 INPUT"Surname, please "“;A$
30 B$=LEFT$(A%.5)

49 PRINT"Short form is ":Bg$
09 GOTO 20

Fig. 4.7. Entering a surname which is sliced to five letters. This action
continues until you press CTRL STOP.

surname to be typed, and line 30 then uses LEFT$(AS,5) to copy the first
five letters of the name. In this example no attempt has been made to do any
more, and the program repeats endlessly because of the GOTO 20 in line 50.
You will have to press CTRL STOP to make it halt. Later on, we’ll look at
ways of controlling this more effectively, so that all of the names can be kept
in a list, and the first five letters copied as required. One thing at a time, if
you please.

Eyes right

String slicing isn’t confined to copying a selected piece of the left-hand side
of a string. We can also take a copy of characters from the right-hand side of
a string. This particular facility isn’t used quite so much as the LEFTS$ one,
but it’s useful none the less. Figure 4.8 illustrates a simple use of this
instruction to avoid having to use the whole of a complicated code number.
Take a look, for example, at the code number on your telephone bill. There

50 Working with MSX BASIC

19 CLS
20 READ D%

39 PRINT"Part No. is ";RIGHT$ (D%, &)
4¢ DATA PDIR-747-164027

Fig. 4.8. Using RIGHT$ to extract letters from the right-hand side of a string.

are other serious uses like this. You can, for example, extract the last four
figures from a string of numbers like 010-242-7016. 1 said a string of
numbers deliberately, because something like this has to be stored as a string
variable rather than as a number. If you try to assign this to a number
variable you'll get a silly answer. Why? Because when you type N =
010-242-7016 the computer assumes that you want to subtract 242 from 10
and 7016 from that result. The value for N is —7248, which is not exactly
what you had in mind! If you use N$=“010-242-7016” then all is well.

Middle cut

There’s another string slicing instruction which is capable of much more
than either LEFTS or RIGHTS. The instruction word is MIDS, and it has to
be followed by three items within brackets, using commas to separate the
items. Item | is the name of the string that you want to slice, as you might
expect by now. The second item is a number which specifies where you want
slicing to start. This number is the number of the characters counted from
the left-hand side of the string, counting the first character as 1. The third
item is another number; the number of characters that you want to slice,
going from left to right and starting at the position that was specified by the
first number.

It’s a lot easier to see in action than to describe, so try the program in Fig.
4.9. Line 20 assigns A$ to the phrase Using Common putty. Line 30 then

10 CLS

20 A$="Using Common putty."

30 B$=MID$ (A%, 7,3)+MID$ (A%, 14,3)+MIDs
(A%,3,3)

49 FRINTB$

Fig. 4.9. Using MID$, which can extract from any partof a string, and can, like
LEFT$ and RIGHT$, be controlled by variables.

assigns a new string, BS, which is made out of slices from AS. The first slice
uses MIDS$(AS,7,3). If you count the characters in AS, including spaces,
you’ll find that the seventh character is the C of Common. Remember that
the counting for MIDS starts at 1, not at 0 like so many other counting
actions. The slice starts with the C, and is of three characters - Com from
this part of the phrase. The other two slices also take three characters each,
to make up the word Computing, and this is what appears on the screen.

Strings Attached 51

1o CLS

2@ X=RND(-TIME)

3@ INPUT"Your surname, please ";N$
40 L7Z=LEN(N$)

S5O RZ=RND (1) *L%+1

66 CD$=MID% (N$,R%. 1)

70 PRINT"Your code letter is "3CD%

Fig. 4.10. Using a number expression along with slicing instructions.

One of the features of all these string slicing instructions is that we can use
variable names or expressions in place of numbers. Fig. 4.10 shows a more
elaborate piece of slicing, which uses an expression along with a random
number. Line 20 ensures that the numbers are truly random, and the action
all starts innocently enough in line 30 with a request for your surname.
Whatever you type is assigned to variable N$, and in line 40 the length of this
string is found and assigned to L%. Line 50 then generates a number, at
random, which will lie between 1 and L9%. We saw how this was done in
Chapter 3, so the principles should be familiar by now. This random
number, assigned to R%, will be a whole number because an integer variable
can hold only a whole number. It is used in line 60 to select one of the letters
from your name, and line 70 informs you that this letter is your code letter
for today. 1t’s a simple example, but the point is important - that whatever
appears in the number part of MID$ (or LEFT$ or RIGHTS) can be a
number variable. Could you now take this piece of program and alter it so
that you get a group of letters of random length? The number of letters
should not be more than half the number of letters of your name, so for
SINCLAIR, I might get IN or CLA or INCL, for example.

Tying up more strings

It’s time now to look at some other types of string functions, starting with
two that are important when your program handles numbers. The first of
these is VAL, and it’s used to convert a number that is in string form back
into ordinary number formso that we can carry out arithmetic. Suppose, for
example, that we have NR$=“3.4”. NRS is a string, and if we carry out
PRINT NRS$+“2” the result is 3.42, not 5.4. This is because numbers which
are in string form cannot be added, and no other form of arithmetic is
possible with them either. If you have a number in this form you can convert
it by using VAL. You can, for example, use AI=VAL(NRS) to convert the
number from its string form in NRS$ to single-precision variable form as A!.
As usual, you can choose whether to use an integer, single-precision or
double-precision number variable. Remember that if you don’t specify, the
form will always be double-precision.

There’s an instruction that performs the opposite conversion; STRS.
When we follow STR$ by a number, number variable, or expression within

52 Working with MSX BASIC

1@ N&="22.5":Vy=D2

206 CLS:PRINT

36 PRINTNS: " times "3Vi® is ";VsVAL (N
%)

49 PRINT

59 V$=STR$ (V)

69 PRINT"There are ";LEN{(V$);3;" charac
ters in "sV&s Ui

79 PRINT

80 PRINTN$;"” added to ":V4$3;" is not *°
5 N$+Vs$

Fig. 4.17. How VAL and STR$ are used toconvert numbers to different forms.

brackets, we carry out a conversion to a string variable. We can then print
this as a string, or assign it to a string variable name, or use string functions
like LEN, MIDS and all the others. Figure 4.11 illustrates these processes -
with a warning! Lines 10 to 30 show that we can perform arithmetic on N§ if
we use VAL with it. Line 50 converts the number variable V into string form,
using the string name of V§. Now V has been assigned to the number 2in line
10, and we would expect just one character to be present in the string. Line
60 reveals that there are two! The reason is that when we use STRS to
convert a number into string form, a space is left at the left-hand side of the
string in case we want to put in a sign (+ or —). This space is, of course, an
invisible extra character, which explains why 2 appears to consist of two
characters, and 42 of three characters. Line 80 shows the strings being
concatenated, just to emphasise the difference between string variables and
number variables.

The reason why

You may now be wondering why on earth we might want to use numbers in
string form, when we have all this carry-on about converting between string
form and number form. One reason is that string form is often very
convenient. Just to give an example, you can enter anything in string form,
using something like INPUT X8$. If you have INPUT X, then what you enter
must be a number, and only a number. You can’t, for example, enter 27A. If
you do, then you'll just get the usual ‘Redo from start’ message to remind
you that only a number is acceptable, and 27A isn’t an ordinary number.
Now if only you will be using the program this might be acceptable, but if a
non-programmer may use it this error message might cause a lot of
confusion. If you use an input which is assigned to a string variable, then
items like 27A will be accepted. You can then use VAL to extract the
number part. This use of VAL, however, works only if the string starts with
a number. You can extract the number 27 from 27A, but not from A27. If
you type A27 as your answer, then VAL will give the number 0. When a

Strings Attached 53

reply consists of mixed numbers and letters, you will have to make use of
MIDS§ or RIGHTS to get rid of the letters before you-use VAL. That’s
something that we’ll come back to when we deal with loops in Chapter 5.

There’s another reason for needing VAL. Up until now, we’ve used
INPUT as our only way of getting a value into a program when it is running.
INPUT, you remember, causes the program to hang up until you press the
RETURN key. There’s another way of getting a character from the
keyboard, though, which uses a different instruction word; INKEYS$. The
important point about this one is that it has to be assigned to a string
variable. You can use K$=INKEYS, but not K=INKEYS. The other point
about INKEYS is that it ‘scans the keyboard’. This means that at the instant
when the line that contains K$=INKEYS is executed, the computer checks
to find if any key is being pressed. If no key is pressed, the computer makes
K$ equal to a blank string and goes on its merry way. If you want to make
use of K$=INKEYS to get something from the keyboard, then, you have to
arrange for the instruction to be repeated until a key is pressed. Figure 4.12

19 CLS

20 PRINT"Press any key....."
30 K$=INKEY%:IF K$=""THEN 30
48 PRINT"Your key was "iK$

50 PRINT"Number value "j3;VAL (K$)

Fig. 4.12. The INKEY$ loop, which will always give a string. This can be
converted by using VAL.

shows this in action. Line 30 assigns K$ to INKEYS, so that the computer
will test the keyboard at this point. If K$ is a blank string we want this action
to repeat, and this is done by the rest which reads:

IF K$=“"THEN 30

This means that if K$ is a blank string because no key was pressed, the next
line should be line 30. This makes line 30 repeat until K$ is no longer a blank.
Note how a blank string is typed as a pair of quotes with nothing between
them - you just tap the quotes key twice to obtain this. The program will
therefore hang up, repeating line 30, until you press a key. You need to press
only one key, and unlike INPUT you don’t have to follow it by pressing the
RETURN key. Lines 40 and 50 then show the effect of what you have done.
This i1s where VAL is really essential, because K$ is a string. If you want to
use a number value here, then you can assign something like V%3=VAL(KS$).
V% must be an integer, because INKEY$ allows you one key only, and one
digit key can’t give you a fraction!

Why should we need STR$? Let me give you just one example. Suppose
you have a program which accepts numbers. These might be catalogue
numbers of gifts, for example. Now when the computer lists are printed, we
might want numbers like 1, 12, 123 to be printed out as 0001, 0012 and 0123
respectively, using four characters. It’s quite difficult to arrange this if the

54 Working with MSX BASIC

1o CLS

20 INFUT"Number, please "“:V
39 VE=8STR$ (V)

49 L=LEN(V$)—-1

59 VE="0000"“+RIGHTS (V$,L)
60 VE=RIGHT$(V$,4)

790 PRINTVS

Fig. 4.13. Using STR$ to print numbers with leading (left hand) zeros.

program prints number variables, but it’s simple if you use strings. Figure
4.13 illustrates what I mean. Line 20 obtains a number from you, and you
should try the effect of numbers like 3, 45, 624, 1234 and so on, keeping to
numbers of four digits or less. In line 30, the number is converted to string
form as V$. Line 40 takes the length of this string and subtracts 1. This,
remember, is because STR$ always places a blank space before the first di git
of the number. We don’t want this when we print the number, so we subtract
1 from L. The string is then concatenated with the string “0000” in line 50,
and only the number part of V§ is added. This is done by using
RIGHTS$(VS,L). For example, if N=23, then LEN(V$) is 3, and L=2. Line
50 then takes the last two characters of V$, “23” and adds them to “0000”, to
get “000023”. Line 60 then takes the last four digits of this, which are “0023”,
and this is printed in line 70. Note how a variable name like V$ can be
reassigned several times in the course of a program like this. You could, of
course, use different variable names at each stage of the process, but it’s
more economical to reassign the same name, and it makes things easier to
follow. This is because you know that V§ is always being used to hold the
quantity that you are working with. There are lots of other manipulations
like this that become easy when STRS is used. Another example would be
adding letters to a number. Could you design part of a program that asks for
your name and your age, then takes the first three letters of your name and
joins them to your age to give a code like SIN52 ?

ASC and CHR$

If you look back to Fig. 4.3 now, you’ll remember that we introduced the
idea of ASCII code. This is the number code used to represent each of the
characters that we can print on the screen. We can find out the code for any
letter by using the function ASC followed, within brackets, by a string
character or a string variable. The result of ASC is a number; the ASCII
code number for that character. If you use ASC(*MSX?™), you’ll get the code
for the M only, because the action of ASC includes rejecting more than one
character. Figure 4.14 shows this in action. Line 20 asks you to press any
key, and line 30 contains an INKEYS$ to get the character from the
keyboard. Line 40 then prints the ASCII code for whatever key has been
pressed by using ASC(K$). When you run this you will find that keys which

Strings Attached 55

1o CLS

20 FRINT"Press a key, please "3
390 K$=INKEY$: IF K$=""THEN 30

49 PRINT"ASCII code is "iASC{K$)
50 6OTO 20

Fig. 4.14. Using ASC to find the ASCII code for letters.

don’t produce anything on the screen will still give an ASCII code. Keys
such as the spacebar, the ESC, TAB and HOME keys, for example, all give
their own codes. You will also find that the CTRL key gives no code of its
own, but when it is pressed along with another key a new code is generated.
Try the effect of SHIFT and CODE along with letter keys as well.

ASC has an opposite function, CHRS$. What follows CHRS, within
brackets, has to be a code number, and the result is the character whose code
number is given. The instruction PRINT CHR$(65), for example, will cause
the letter A to appear on the screen, because 65 is the ASCII code for the
letter A. Figure 4.151s a short program that allows you to enter numbers and

1eé CLS

20 LOCATEZ, 19

3¢ INPUT"Number, please “iN

49 FPRINT:PRINT"Character is ";CHR$(N)
5@ PRINT:FPRINT"Press any key to proce
ed”

60 KE=INKEY$: IF K$=""THEN 6460

79 30TO1e

Fig. 4.15. Using CHR$ to find what character shape corresponds toa number
code.

see what their effect is on the screen. The numbers that can be used for this
CHRS action extend from 0 to 255. The numbers from 0 to 31 do not
produce any visible character on the screen. These are ‘action’ code
numbers, which produce effects like backspacing the cursor, clearing the
screen and so on. Figure 4.16 lists these effects. The number 32 is the ASCII
code for the spacebar, and the numbers from 33 to 255 will all produce
various characters.

One of the main uses of CHRS, which we shall investigate in Chapter 7, is
in producing graphics shapes, the other is for coding messages. Every now
and again it’s useful to be able to hide a message in a program so that it’s not
too obvious to anyone who reads the listing. Using ASCII codes is not a
particularly good way of hiding a message from a skilled programmer, but
for non-skilled users it’s good enough. The codes can be kept in a DATA
line, read in one by one, converted to characters by using CHRS, and
printed. This is something that we’ll look at when we come to the subject of
loops in the next chapter.

56 Working with MSX BASIC

Code Effect

Make next character a graphic.

1

2 Move cursor to first character of word to the left.
3 Stop program.

4 Nil.

5 Delete rest of line.

6 Move cursor to first character of next word.
7 Sound beep.

8 Backspace cursor by one step and delete character,
9 Move cursor eight spaces to the right.

10 Move cursor to first position on next line.
11 Move cursor to top left corner of screen.

12 Clear the screen.

13 As for RETURN Kkey.

14 Cursor to end of line.

15-17 Nil.

18 Insert character at cursor position.

19,20 Nil

21 Delete line.

22-27 Nil.

28 Cursor right.

29 Cursor left.

30 Cursor up.

31 Cursor down.

Fig. 4.16. The effects of the ASCII codes O to 31.

The law about order

We saw earlier in Fig. 3.9, and we’ll look again in Fig. 5.12, how numbers
can be compared. We can also compare strings, using the ASCII codes as
the basis for comparison. Two letters are identical if they have identical
ASCIH codes, so it’s not difficult to see what the identity sign = means when
we apply it to strings. If two long strings are identical, then they must
contain the same letters in the same order. It’s not so easy to see how we use
the > and < signs until we think of ASCII codes. The ASCII code for A is
65, and the code for B is 66. In this sense, A is ‘less than’ B, because it has a
smaller ASCII code. If we want to place letters into alphabetical order, then,
we simply arrange them in order of ascending ASCII codes.

This process can be taken one stage further, though, to compare complete
words, character by character. Figure 4.17 illustrates this use of comparison
using the = and > symbols. Line 20 assigns a nonsense word — it’s just the
first six letters on the top row of letter keys. Line 30 then asks youto type a

Strings Attached 57

19 CLS

20 As="QWERTY"

3¢ PRINT: INPUT"Type a word {(capitals)
";Bs

49 IF Be=A% THEN PRINT "Same as mine!
"sEND

S® IF A%$>B% THEN SWAP A%,Bs$

69 PRINT"Correct corder is ";A8%;" then
"sBs$

79 END

Fig. 4.17. Comparing words to decide on their alphabetical order.

word, using upper-case (capital) letters. The comparisons are then carried
out in lines 40 and 50. If the word that you have typed, which is assigned to
BS, is identical to QWERTY, then the message in line 40 is printed and the
program ends. If QWERTY would come later in an index than your word,
then line 50 is carried out. If, for example, you typed PERIPHERAL, then
since Q comes after P in the alphabet and has an ASCII code that is greater
than the code for P, your word B$ scores lower than A$, and line 50 swaps
them round. MSX computers do this by using the useful command SWAP.
When SWAP is followed by two variable names, separated by a comma, it
will do what the name suggests — swap the values. This is the command that
has been used in line 50 following the IF test. Line 60 will then print the
words in the order A$ and then B$, which will be the correct alphabetical
order. If the word that you typed comes later than QWERTY, for example
TAPE, then A$ is not ‘greater than’ BS, and the test in line 50 fails. No swap
is made, and the order A$, then B$, is still correct. Note the important point
though, that words like QWERTZ and QWERTX will be put correctly into
order - it’s not just the first letter that counts. The SWAP command applies
to number variables as well as to string variables.

String arrays

We looked briefly at the idea of number arrays in Chapter 3, showing how a
single variable name could be used for a set of numbers. The same
arrangement can be used for strings, and the only change that needs to be
made is that a string variable name has to be used. We can, for example, use
AS(1), A$(2), A$(3) and so on, to represent a set of strings, which might be
the names of the members of the local Music Society (or the violinists,
perhaps). A string array like this also has to be dimensioned so that the
computer can set aside memory for storing the strings. If, for example, you
want to use the array AS$ for up to item A$(100), then you need a line that
reads: DIM AS$(100). This line would have to be carried out before you start
assigning values to these A$ elements. If you find in the course of a program
that you need more array items and you haven’t dimensioned enough, hard

58 Working with MSX BASIC

luck! You cannot dimension the same array a second time while the
program is running. If your early line was DIM AS$(100), you cannot have a
later line of DIM A$(200). This is because the computer has set aside
memory for the first dimensioning, and will have made use of the memory
around this reserved piece. Attempting to re-dimension A$ would cause the
computer to clear some of the other parts of its memory, and this could
result in the program being completely destroyed. When the computer
comes across a second DIM statement about the same variable name, then,
you get a ‘Re-dimensioned array’ error message, and the program stops. The
MSX machines allow you to use subscript numbers up to 10 withour
needing to use DIM. This allows you eleven items, because A$(0) can be
used as well as AS(1) and so on. What you have to watch if you take
advantage of this is that you do not use an array like this and then try to
dimension it by a command like DIM AS$(20). This also will cause the ‘Re-
dimensioned array’ message. We’ll look at examples of stringarrays in use in
Chapter 5.

String ends

There are, inevitably, a few commands that we haven’t looked at yet, mainly
because they haven't fitted in with the others. One of these is the interesting
and useful one, INPUTS. This is not quite like INPUT, because it allows you
to enter a preset number of characters, and they are not shown on the screen
when you enter them. It’s ideal for security codes, as Fig. 4. 18 shows. Line 30

19 CLS

20 PRINT"Please type the S-letter cod
E"

30 AS=INPUT$(5)

49 IF A$<>"QSRBN"THEN FRINT *"Incorrec
t- no entry":60T0O1%

59 PRINT"Pass, friend."

Fig. 4.18. How INPUTS is used for ‘security entry’.

contains the step AS=INPUT$(5). This means that only five characters can
be accepted for this input, and the string of characters will be assigned to AS.
The computer hangs up and waits for you when line 30 runs, but you don’s
need to press ENTER. Immediately you press the fifth key, the entry is
complete, but without anything appearing on the screen. In this example,
line 40 then checks that what you have entered is the correct password. It’s a
very useful way of getting an entry of the right number of characters. There’s
no need to count characters and use a test to detect the entry of the wrong
number of characters. An extension to INPUTS allows entry from tape or
disk.

Another pair of useful commands uses FRE. If you type PRINT

Strings Attached 59

FRE(AS$), then the machine will print the number of bytes of memory that
you can use for strings. You can use any variable name in place of A§, and it
doesn’t need to be a variable name that is used or assigned in your program.
A variable name used in this way is called a dummy variable. You will find
that when you switch on the machine, 200 bytes of memory are reserved for
strings; space for 200 characters. This isn’t a lot, but a surprising number of
programs use even less than this. You already know how to extend the string
space using CLEAR. If you use a dummy number variable with FRE, as for
example PRINT FRE(A), then the computer will print the rotal amount of
memory that is available. This may give you a nasty shock if you thought
that your machine had 64K (=65536 bytes) of free memory! You can use
FRE(A) to decide if you have to stop using a program because of lack of
memory. By having a line such as:

IF FRE(A)<1000 THEN PRINT “No room - please record
data”:GOSUB 5000

you can detect when memory is running short, and then record your data.

Finally, MSX machines can make use of an excellent command, INSTR.
This is used to find if one string is contained in another. It’s used in the
simple form:

X%=INSTR (AS, BS)

to find if BS is contained in AS$. Ifitis, then X% is the position number of the
first letter of BS that is found in AS. If B$ is nor contained in AS$, then X% s
zero. X% will always be zero if BS is longer than A$. You can, of course, use
the form:

PRINT INSTR(A$,BS)

if you just want to see the number.

Figure 4.19 shows a simple example of this function in action. Lines 20 to
40 allocate names to strings, and lines 50 to 70 make the tests, so that you can
see how they work out. Notice that the strings have to be exact for the
function to work - it's no good looking for Bert if what is contained in the

19 CLS

20 AS="Albert Hali"

30 B¥="Richardson, Bertram"

49 C¥="Sinclair, I"

50 PRINT"In "3;A%$:" bert is located at
" INSTR (A%, "bert")

60 PRINT"In ";B%:" Bert is located at
T3 INSTR{(BS, "Bert”)

70 PRINT"In "3;C%$:" BERT is located at
"3 INSTR(CS$, "BERT")

Fig. 4.19. Using INSTR to find if a group of letters is contained within another
group.

60 Working with MSX BASIC

string is bert or BERT, for example. To leave you with a thought, suppose
you had a string A$="YESyesYUPyupSUREsureOKok”, and you asked
for a yes/no answer. You could get INSTR to look through this. If the result
of X%=INSTR(Answer$,A$) is zero, then the answer wasn’t any form of
YES! The other point about INSTR is that you can specify at which
character in the string you start the search. This is done by putting in a
number as the first item within the brackets. The other items are used as
before, with commas between them. For example, if you had:

X%—=INSTR(5,A$,BS$)

the computer would start at character number 5 of AS$, and look from that
position to find if BS was present. This can be useful if, for example, you are
looking for a space between a forename and a surname. The program might
be misled if there was a space just before the name, so using
INSTR(2,A$,B$) would skip over this first space and concentrate on
looking for the second one. The number X% that you obtain from this can
then be used in MID$, LEFTS$ or RIGHT$ commands to separate out the
words. Magic!

Chapter Five
Repeating Yourself

One of the activities for which a computer is particularly well suited is
repeating a set of instructions, and every computer is well equipped with
keywords that will cause repetition. The MSX computers are no exception
to this rule. We’ll start with the simplest of these ‘repeater’ actions, one
which we have already used, GOTO.

GOTO means exactly what you would expect it to mean — go to another
line number. Normally a program is carried out by executing the
instructions in ascending order of line number. In plain language that means
starting at the lowest numbered line, working through the lines in order and
ending at the highest numbered line. Using GOTO can break this
arrangement, so that a line or a set of lines will be carried out in the ‘wrong’
order, or carried out over and over again.

Figure 5.1 shows an example of a very simple repetition or ‘loop’, as we

10 PRINT"MSX COMPUTING FILLS YOUR SCR
EEN"
20 GOTO10

Fig. 5.1. Avery simple loop. You can stop this by pressing the CTRLand STOP
keys.

call it. Line 10 contains a simple PRINT instruction. When line 10 has been
carried out, the program moves on to line 20, which instructs it to go back to
line 10 again. This is a never-ending loop, and it will cause the screen to fill
with the words:

MSX COMPUTING FILLS YOUR SCREEN

until you press the CTRL and STOP keys to ‘break the loop’. Anyloop that
appears to be running forever can be stopped by pressing the STOP key.
This does what it says, stops the program running, but not completely. If
you press the STOP key again, the program will take over from where it left
off. We’ll see later that this is very useful if you are chasing faults in a
program. If you want to stop the program completely, so that you can
record it or change it, then you have to press the CTRL key and the STOP
key together.

62 Working with MSX BASIC

190 CLS:N=0

20 FRINT N

30 N=N+1

40 GOTO 20

59 REM Use CTRL and STOP again.

Fig. 5.2. Alloop which carries out a count-up action very rapidly. You will also
have to use the CTRL and STOP keys to stop this one.

Now try a loop in which there is slightly more noticeable activity. Figure
5.2 shows a loop in which a different number is printed out each time the
computer goes through the actions of the loop. We call this ‘each pass
through the loop’. Line 10 sets the value of the variable N at 0. This is printed
in line 20, and then line 30 increments the value of N. Line 40 forms the loop,
so that the program will cause a very rapid count-up to appear on the screen.
Once again, you'll have to use the STOP key to stop it, and this gives you a
chance to see how the program will carry on the next time that you press the
STOP key. As before, pressing CTRL and STOP together will break out of
the program.

Now an uncontrolled loop like this is not exactly good to have, and
GOTO is a method of creating loops that we prefer not to use! We don’t
always have an alternative, but there is one - the FOR.. . NEXT loop. As the
name suggests, this makes use of two new instruction words, FOR and
NEXT. The instructions that are repeated are the instructions that are
placed between FOR and NEXT. Figure 5.3 illustrates a very simple

10 CLS

29 FOR N=1 TO 1o

3¢ FRINT“MSX COMPUTERS RULE O0.K."
40 NEXT

Fig. 5.3. Using the FOR...NEXT loop for a counted number of repetitions.

example of the FOR...NEXT loop in action. The line which contains FOR
must also include a number variable which is used for counting, and
numbers which control the start of the count and its end. In the example, N
is the counter variable, and its limit numbers are 1 and 10. The NEXT is in
line 40, and so anything between lines 20 and 40 will be repeated.

As it happens, what lies between these lines is simply the PRINT
instruction, and the effect of the program will be to print MSX
COMPUTERS RULE O.K. ten times. At the first pass through the loop,
the value of N is set to I, and the phrase is printed. When the NEXT
instruction is encountered, the computer increments the value of N, from 1
to 2in this case. It then checks to see if this value exceeds the limit of 10 that
has been set. If it doesn’t, then line 30 s repeated, and this will continue until
the value of N exceeds 10 — we’ll look at that point later. The effect in this
example is to cause ten repetitions.

You don’t have to confine this action to single loops either. Figure 5.4

Repeating Yourself 63

i CLS

20 FOR N=1 TO 10

3@ PRINT"Count is "iN
40 FOR J=1 TO S509:NEXT
5@ CLS:NEXT

Fig. 5.4. A program that uses nested loops, with one loop inside another. The
inner loop is a delay loop.

shows an example of what we call ‘nested loops’, meaning that one loop is
contained completely inside another one. When loops are nested in this way,
we can describe the loops as ‘inner’ and ‘outer’. The outer loop starts in line
20, using variable N which goes from 1 to 10 in value. Line 30 is part of this
outer loop, printing the value that the counter variable N has reached. Line
40, however, is another complete loop. This must make use of a different
variable name, and it must start and finish again before the end of the outer
loop. We have used variable J, and we have put nothing between the FOR
part and the NEXT part to be carried out. All that this loop does, then, is to
waste time, making sure that there is some measurable time between the
actions in the main loop. The last action of the main loop is clearing the
screen in line 50. The overall effect, then, is to show a count-up on the screen,
slowly enough for you to see the changes, and wiping the screen clear each
time. In this example we have used NEXT to indicate the end of each loop.
We could use NEXT Jinline 40 and NEXT N in line 50 if we liked, but this is
not essential. It also has the effect of slowing the computer down, though the
effect is not important in this program. When you do use NEXT J and
NEXT N, you must be absolutely sure that you have put the correct variable
names following each NEXT. If you don’t, the computer will stop with a
NEXT without FOR error - meaning that the NEXTs don’t match up with
the FORs in this case. You would also get this message if you had omitted a
NEXT.

Even at this stage it’s possible to see how useful this FOR.. NEXT loop
can be, but there’s more to come. To start with, the loops that we have
looked at so far count upwards, incrementing the number variable. We
don’t always want this, and we can add the instruction word STEP to the
end of the FOR line to alter this change of variable value. We could, for
example, use a line like:

FOR N=1TO 9 STEP 2

which would cause the values of N to change in the sequence 1,3,5,7,9. When
we don’t type STEP, the loop will always use increments of 1.

Figure 5.5 illustrates an outer loop which has a step of —1, so that the
count is downwards. N starts with a value of 10, and is decremented on each
pass through the loop. Line 40 once again forms a time delay so that the
count-down takes place at a civilised speed. This is a particularly useful way
of slowing the count-down. If we want to speed the rate up, the easiest way is

64 Working with MSX BASIC

1o CLS

20 FOR N=1@ 70 1 STEF -1

30 PRINT N;" seconds and counting.”
49 FOR J=1 TO 500:NEXT

59 CLS:NEXT

69 PRINT"BLASTOFF!®

Fig. 5.5. A count-down program, making use of STEP.

to use an integer variable such as N% in place of N. If we do this, however,
we can’t use steps that contain fractions, like .1.

Every now and again, when we are using loops, we find that we need to use
the value of N (or whatever variable name we have used) after the loop has
finished. It's important to know what this will be, however, and Fig. 5.6

19 CLS

29 FOR N=1 TO 5

30 PRINT N

49 NEXT

3@ PRINT "N is now “;N
6@ FOR N=5 TO 1 STEP -1
70 PRINT N

80 NEXT

9@ PRINT "N is now ";N

Fig. 5.6. Finding the value of the loop variable after a loop action is completed.

brings it home. This contains two loops, one counting up, the other counting
down. At the end of each loop, the value of the counter variable is printed.
This reveals that the value of N is 6 in line 50, after completingthe FOR N=
1 TO 5 loop, and is 0 in line 90 after completing the FOR N =5TO | STEP
—1 loop. If you want to make use of the value of N, or whatever variable
name you have selected to use, you will have to remember that it will have
changed by one more step at the end of the loop.

One of the most valuable features of the FOR.. NEXT loop, however, is
the way in which it can be used with number variables instead of just
numbers. Figure 5.7 illustrates this in a simple way. The letters A,Band C
are assigned as numbers in the usual way in line 20, but theyare then used in
a FOR...NEXT loop in line 30. The limits are set by Aand B, and the step is
obtained from an expression, B/C. The rule is that if you have anything that
represents a number or can be worked out to give a number, then you can
use it in a loop like this.

19 CLS

20 A=2:B=5:C=10

3®@ FOR N=A TO B STEP R/C
49 PRINT N

S50 NEXT

Fig. 5.7. A loop instruction that is formed with number variables.

Repeating Yourself 65

Loops and decisions

It's time to see loops being used rather than just demonstrated. A simple
application is in totalling numbers. The action that we want is to enter
numbers while the computer keeps a running total, adding each number to
the total of the numbers so far. From what we have done so far, it’s easy to
see how this could be done if we wanted to use numbers in fixed quantities,
like ten numbers in a set. The program of Fig. 5.8 does just this.

1o TT=9:CLS

29 PRINTTAB(6)"Totalling Numbers Prog
ram"

30 PRINT:PRINT"Enter esach number as r
equested. "

49 PRINT"The program will give the to
tal.™

50 FOR N=1 TO 1o

69 PRINT“"Number "iN3i "please ";

70 INPUT J:TT=TT+J

80 PRINT"Total so far is"sTT

90 NEXT

Fig. 5.8. A number-totalling program for ten numbers.

The program starts by setting a number variable TT to zero. This is the
number variable that will be used to hold the total, and it has to start at zero.
As it happens, the MSX computer arranges this automatically at the start of
a program, but it’s a good habit to ensure that everything that has to start
with some value actually does. We can’t, incidentally, use TO for this
variable, because TO is a reserved word, part of the FOR...NEXT set of
words. You will get a ‘Syntax error’ message when the program runs if you
have used a ‘reserved word’ as a variable name.

Lines 20 to 40 issue instructions, and the action starts in line 50. This is the
start of a FOR...NEXT loop which will repeat the actions of lines 60 to 80
ten times. Line 60 reminds you of how many numbers you have entered by
printing the value of N each time, and line 70 allows you to INPUT a
number which is then assigned to variable name J. This is then added to the
total in the second half of line 70, and line 80 prints the value of this total.
The loop then repeats. At the end of the program, the final total has been
printed.

It’s all good stuff, but how many times would you want to have just ten
numbers? It would be a lot more convenient if we could just stop the action
by signalling to the computer in some way, perhaps by entering a value like 0
or 999. A value like this is called a terminator, something that is obviously
not one of the normal entries that we would use, but just a signal. For a
number-totalling program, a terminator of 0 is very convenient, because if it
gets added to the total it won’t make any difference. To do this, we have to

66 Working with MSX BASIC

10 TT=a:CLS
20 PRINTTAB(6) "Totalling Numbers Prog

ram"

30 PRINT:PRINT"Enter each number as r
equested. "

46 PRINT"The program will give the to
tal.”™

50 FOR N=1 TO 199

60 PRINT"Number ":iN; "please "3
79 INPUT J:TT=TT+J

80 IF J=0 THEN N=109©

99 PRINT"Total so far is"sTT
190 NEXT

Fig. 5.9. How to break out of a FOR...NEXT loop if you want to.

test the number that is input, and change the action of the loop if the input is
0. Figure 5.9 shows one way of doing this. The program is very much as
before, but a new line 80 has been added. This uses the keyword IF to make
the test: [F J=0 THEN N=100. What this amounts to is that if the number
which was entered in line 70 was 0, then the counter number of the
FOR...NEXT loop, N, is set to its final value. This will stop the loop, and so
stop this program. '

You might wonder why we don’t just make line 80 read: IF J=0 THEN
200 and place a line 200 END at the end of the program. The answer is that
you can, in a simple example like this, and it works. In a longer and more
complicated program, though, jumping out of a loop in this way can cause
trouble. The trouble manifests itself in the form of the program suddenly
going haywire at some later time, usually after you have entered a lot of data
and taken a lot of time over it. The principle that is illustrated in Figure 5.9 is
the safe way of ending a FOR...NEXT loop before the normal limit of
loops.

There are other ways, however, and Fig. 5.10 shows an example of one of

10 CLS:PRINTTAB(12) "Running Total*®
29 PRINT:?”RINT"The program will total
numbers for":FRINT"vou."

3@ PRINT"Enter © to stop.”

42 TT=9:N=0

59 N=N+1:FPRINT"Item ":iN:" is “;

60 INFUT J

79 IF J=9 THEN 110

8@ TT=TT+J

99 PRINT"Total is "“;TT

199 G60OTOSe

119 PRINT"Final total is “;TT

Fig. 5.10. A running total program which doesn’'t use FOR...NEXT. The
number is tested near the start of the loop.

Repeating Yourself 67

them in action. We don’t use a FOR...NEXT loop, because we don’t know
in advance how many times we might want to go through the loop, so we
have to go back to using GOTO. This time, however, we'll keep GOTO
under closer control - the word won’t even appear in the program! This time
the instructions appear first, but we still have to make the total variable TT
equal to zero in line 40. In the same line, a variable N is also set to zero. Line
50 increments the value of N, so that when line 50 runs for the first time, it
prints:

Item 1 1is ?

and waits for you to type the number and press RETURN. Each time you
type a number, then, in response to the request in line 50, the number that
you type is tested in line 70. If the number is zero, then the program jumps to
line 110, where the final total is printed, and the program ends. If the number
is not zero, though, it is added to the total in line 80, and line 90 prints the
running total. In line 100, the program is forced to return to line 50 for the
next number entry.

A loop of this type is called a WHILE...DO loop, and some computers
allow you to make the loop using these words instead of using GOTO. The
reason for the name is that while J is not zero, the loop does the totalling
action. The test is made before the number is added. When we use 0 to
terminate the loop, this is not important, but if we were using a number such
as —1, then it would be important not to add in this value.

There is another form of loop, called the REPEAT...UNTIL loop. Some
computers allow these words to be used but, on MSX machines, we once
again have to use GOTO (or THEN) to form the loop. Anexample is shown
in Fig. 5.11. Inthis one, the total variable TT is set to zero in line 40, and then

190 CLS:PRINTTAB(12) "Running Total"
20 PRINT:PRINT"The program will total
numbers for":PRINT"you."

3@ PRINT"Enter @ to stop.”

49 TT=0

S50 INPUT"Number, please ":

60 TT=TT+J '

79 PRINT"Total so far is "377

80 IF J<>0 THEN 5S¢

99 PRINT"Enc of totalling.™®

Fig. 5.717. Another running total loop, with the number tested near the end of
the loop.

line 50 gets the input number and assigns it to variable J. Thisis added to the
total in line 60, and line 70 prints the value of the total so far. Line 80 is the
loop controller, with the IF test. The test inline 80 is to see if the value of N is
not equal to zero. The odd-looking sign that is made by combining the less

68 Working with MSX BASIC

than and the greater than signs, <>, is used to mean not equal, so the line
reads: ‘if N is not equal to zero, then (GOTO) line 50’. We can put the GOTO
in, or leave it out. Since it’s just a few more letters to type, I've left it out.

The effect, then, is that if the number which you typed in line 50 was not a
zero, line 80 will send the program back to repeat line 50. This will continue
until you do enter a zero. When this happens, the test in line 80 fails (N is
zero), and the program looks for a line 90. This line announces the end of the
program, and since there are no more lines, the program stops. When this
type of loop is used, the actions of the loop will always run at least once,
because the test is placed at the end of the loop. There’s just one thing that
you have to be careful about in programs of this type. When the program
starts, enter a number, say 2. From then on, don’t press a number key, just
the ENTER key. You’ll see the number 2 entered automatically each time!
This is because the machine keeps each INPUT in a special piece of memory,
and it’s only altered by another INPUT. You have to be careful with
totalling programs because of this; if no key is pressed, then pressing
ENTER will still have an effect - it will enter the previous number once
again. Getting round this one is not quite so easy. You have to write a loop
which contains INKEYS, and which adds characters to a variable name
until RETURN is pressed. You'llknow how to do that by the time you finish
this book. These types of loops allow you much more freedom than a
FOR...NEXT loop, because you are not confined to a fixed number of
repetitions. The key to it is the use of IFto make a decision —and that’s what
we need to look at more closely now.

Decisions, decisions

We can make a number of types of comparisons between number variables
or numbers, and these are listed in Fig. 5.12. The mathematical signs are
used for convenience, and you have to remember which way round the

L
]
=t

Meaning

Quantities are identical.
Quantity on left is greater than quantity on right.
Quantity on left is less than quantity on right.
Quantity on left is greater than or equal to quantity on right.
Quantity on left is less than or equal to quantity on right.
> Quantities are not equal.

NNV AV

Fig. 5.12. The mathematical signs used for comparing numbers and number
variables.

Repeating Yourself 69

greater than and less than signs have to be. It's important to note that the
equals sign means identical to when it is used in a test like this. If A is
4.9999999 and B is 5.0000000 then a test such as IF A = B will fail. A is not
identical to B, even though it is close enough to be equal to our eyes. The
important point here is that the numbers we see on the screen have been
rounded, so that PRINT A in the example above might give the result 5. The
test, however, is made on the numbers which have not been rounded.
Figure 5.13 shows another test - this time on string variables. The
instruction is in line 20, you are asked to type the y or n key. Line 30 gets

10 CLS

20 PRINT"Type y or n"

30 K$=INKEY$: IF K3$=""THEN 3@

49 IF K$="y" THEN 109 ELSE IF K$="n"
THEN 200

50 PRINT"Your answer "3K$3;" is not vy
or n...":PRINT"Please try again."

60 GOTO 30

79 END

109 PRINT"That was y for YES.":END
20@ PRINT"That was n for NO":END

Fig. 5.13. Testing string variables, in this example to find whether areplyisy
or n. ELSE has been used to provide a mugtrap.

your answer; you have only to press the y or n key without touching
RETURN. The key that you have pressed has its value assigned to K$, so
that K$ should Be y or n. Line 40 then analyses this result. If the key that you
pressed was neither y nor n, then the program ignores the THEN 100 and
THEN 200 instructions of line 40, and goes on to line 50 and 60. This tells
you that you didn’t press either y orn,and you musttry again. A linelike thisis
called a mugtrap.

The tests in line 40 of this example are for identity. Only if K$ is absolutely
identical to y will the program jump to line 100, and print the phrase: That
was y for YES. Using INKEYS in place of INPUT does not allow you to
make such mistakes as typing a space ahead of y, or a space following it. You
could, of course, type Y in place of y, in which case K$ will nor be identical,
and the test fails. If the first test failed, however, then ELSE forces the
second test to be tried. This time, the answer is tested for the letter n and if
this is found the program jumps to line 200. This line then prints: That was n
for NO, and the program ends once again. It’s up to you to form these tests
so that they behave in the way that you want! You can use AND and OR to
make the tests apply to more than one thing, so you can use IF K$=Y OR
K$=y, for example, to test either form of the Y key.

The MSX computer is one of a select group of computers that allows you
to use the instruction word ELSE, and it offers an alternative to the test that
is carried out by IF. In the example of Fig. 5.13, two tests were combined.

70 Working with MSX BASIC

You can, however, combine much more than this. You can use lines like IF
X=3 THEN 100 ELSE IF X=4 THEN 200 ELSE IF X=5 THEN 300 ...
and so on. When lines get as complicated as this, though, they become hard
to follow, and there are easier ways of achieving the same effect as we shall
see.

Looping to a purpose

So far, we have been looking at short examples of loops which were
designed to show how loops are constructed. It’s time now to look at
examples of loops in use, and to see how a program which includes aloop is
designed. All loops are intended to carry out a set of actions over and over
again. What you have to decide before you try to write the BASIC of a
looping program is what actions you want to repeat, and what will make the
loop stop. If it is possible to design the loop so that it repeats some definite
number of times, this should be done. The reason is that this would allow
you to use a FOR...NEXT loop, rather than trying to make up a loop with
GOTO. The trouble with GOTO loops is twofold. First of all, the start of the
loop is not marked. When you read a program listing, you can see where a
FOR...NEXT loop starts - in the line which contains FOR. You don’t know
where a GOTO loop starts, because the only thing that indicates it is the line
number that follows GOTO (or THEN). If you sce a line that reads:

200 GOTO 100

then it’s a fair bet that there is a loop that starts at line 100, but you have had
to read a lot of the program to find it! The other difficulty about GOTO
loops is that it’s very easy to make a mistake and go to the wrong line. The
result might be a program that doesn’t work. Even worse, the result can be a
program that looks as if it works, but doesn’t give the correct results.
We'll look, then, at a very simple number-guessing game and how it is
designed. The listing is shown in Fig. 5.15. Fig. 5.14 shows the plan which
was used to design it. This plan consists of a set of steps, with brackets used
to expand some steps into more detail. The description contains no
keywords and, in fact, it should not because the use of keywords makes it
more difficult to follow. The plan starts with the words Ten times, to show
that we want the steps of the program to be repeated this number of times.
This allows us to make use of a FOR...NEXT loop, which is the best type of
loop to use in MSX BASIC. The next step is selecting a number at random.
This is the first of the steps that will be repeated ten times, and it is followed
by Input guess. This is where the user of the program enters the number that
is guessed. The next steps are concerned with scoring. If the guess is exactly
correct, then two points are scored, and the arrow shows that the next step
must be the pause. As an alternative, if the guess is close, one point is added
to the score, and again the program moves to the pause stage. If the guess is

Repeating Yourself 71

Ten times Clear screen
| Title
Random number Instructions

l

Input guess
|

Equal - score 2 —
Almost - score |

No - no score
|

Pause -

|
Next

Fig. 5.14. The design steps for the number-guessing game in Fig. 5.15.

completely out, then some message will be printed (‘No score’, perhaps), and
once again, the program pauses. The pause will be about a couple of
seconds, and after the pause, the program moves to repeat the loop.

The next step is to fill in some details. This is done on the right-hand side
of the set of steps of the plan, using brackets to show where several more
detailed steps have to be inserted. The points that have been put in here are
where the CLS, heading, and instructions steps are placed. We also make
notes about messages, and the length of time of the pause. For a simple
program like this, that’s all we need to start writing the BASIC lines. You
don’t necessarily have to write numbered lines yet, though. At this stage, it
makes more sense to write BASIC for one step at a time, and the order of
running the steps is not usually the best order for writing. For example, there
isn’t much point in writing a heading and instructions until we’re sure that
the program works. The steps that we should concentrate on first are the
selection of a random number and the scoring steps because, unless these are
correct, the rest of the program is of little use.

Start with the random number, then. Since we are dealing with numbers
that will all be integers, we can assign an integer dealing with numbers that
will all be integers, we can assign an integer variable, and use:

XZ%=INT(RND(1)*10+1)

to get a random number as X%. This, remember, will get a random number
which lies between | and 10. To make sure that the sequence of numbers is
different each time the program runs, we will have to use X%—=RND

(—TIME) early in the program before the loop starts. Make a note of it! The
testing for equality is easy enough, and we can settle a variable name for the

72 Working with MSX BASIC

guessed number -~ N%. There willbe a GOTO at the end of this line to lead to
the Pause step. Testing for near equality can be done by using
ABS(N%—X%). ABS will make whatever lies between the brackets into a
positive quantity, so if N¢ happens to be less than X%, the result will be the
difference, but with a positive sign. Once again, this step has to be ended
with a GOTO to make the Pause step come next.

We can then look at the Pause step. MSX BASIC provides for a variable
which is called TIME. This can be assigned like any other variable, but its
value is incremented 50 times per second (60 times per second in the USA).
This incrementing action is completely automatic, and needs no attention. If
we set TIME=0, and in the next line keep testing to find when TIME
exceeds 100, we shall have achieved a two-second pause (in the European
version). Now there’s a last minute thought. It looks odd to have the bottom
line of the screen always showing the function key words while this program
is running. We can shut off this display when our program starts by using
KEY OFF. At the end of the program, we can restore the Key display by
using KEY ON. Now we need only make a few notes at the side of the plan
about where on the screen we want the messages to appear and we're ready
to write the final version in Fig. 5.15.

Line 10 in Fig. 5.15 switches off the KEY display, sets the score variable
SCY% to zero, carries out the RND(—TIME) step, and starts the loop.

10 KEY OFF:8C%Z=0: X%Z=RND(-TIME):FOR J%

=1 TO 1o

20 CLS:PRINTTAB(10)"GUESS THE NUMBER"

39 PRINT:PRINT"If you get near, 1711
tell you":PRINT"Number is between 1 a

nd 1a."

49 PRINT:PRINT"Attempt *;J%Z:PRINT

50 XZ=INT(RND(1)%*10+1)

62 INPUT"YOUR GUESS — "3N%

790 1IF N/%=X7Z THEN FPRINT"Spot on. Score
2" :SC%=SC%Z+2: 60T0 100

80 IF ABS(NZ-X%)<3 THEN PRINT"Near- i
t was "3XZ3" .Score 1%":SC%4=SCZ+1:60T0
100

90 PRINT:PRINT"No score.”

100 LOCATE 9,20:PRINT"SCORE TOTAL IS
“sS5C%

1190 TIME=0©

120 IF TIME<1909 THEN 120

130 NEXT

149 KEY ON

Fig. 5.15. Asimple number-guessing game which uses number comparisons.

Because the FOR J%=1 to 10 step is the last one in this line, the first three
steps are not repeated on each pass through the loop. The steps of the loop

Repeating Yourself 73

start with line 20. This clears the screen, and prints the heading. Line 30 then
provides brief instructions. Line 40 prints the attempt number, so that the
user knows how many shots have been used up. .

The real action starts in line 50, where the X% = INT(RND(1)*10+1) step
causes variable X% to take a whole-number value that lies between 1 and 10.
You enter your number at line 60, and the tests are made in lines 70 and 80. If
the number that you picked is identical to the random number, then you get
the ‘Spot on’ message in line 70, two points are added to the score variable
SC%, and the GOTO 100 skips over the other tests to get to the Pause stage.
The less obvious test is in line 80. If the difference between your guess and
the actual number is less than 3 (meaning | or 2) then the message in line 80 is
printed, the score is bumped up by one point, and you move to the Pause. If
you don’t get anywhere near, the program moves to line 90 to announce ‘No
score’. The pause is then carried out, using TIME, and then line 130 contains
the NEXT that will make the loop repeat. It’s very simple, but quite
effective.

Many of the commands that we have looked at in previous chapters take
on much more meaning when we carry them out inside loops. This is
particularly true when the counter variable of the loop can be used as part of
the action. Take a look at Fig. 5.16, for example, which makes use of the fact

1o CLS

20 INPUT"Your name, please ";NM$

30 L%U=LEN(NM$) :CZ=(L%L/2) +1

49 FOR NZ=1 TO C%

5@ PRINTTAB(21-NX)MIDS (NM$, C%—N%Z+1,N%
*#2—-1)

69 NEXT

Fig. 5.16. Using loop variables to make a letter pyramid to show the action of
MID$ with a formula.

that we can use variable names or expressions in place of numbers in string-
slicing actions. It all starts innocently enough in line 20 with a request for
your name. Whatever you type is assigned to variable NMS$, and in line 30 a
bit of mathematical juggling is carried out. How does it work? Suppose you
type as your name DONALD. This has six letters, so in line 30, LY is
assigned to 6, and CY is the whole number part of L%/ 2 (equal to 3), plus 1,
making 4. Line 40 then starts a loop of 4 passes. In the first pass you print at
TAB(20) because N%=1. What you print is the MID$ of the name using
CO%—NY%+1, which is 4—1+1=4, and N%*2—1, which is also 1. What you
print is therefore MID$(NM$,4,1), which is A in this example. On the next
run through the loop, N% s 2, C%—N%+1is 3, and N%*2—1is also 3. What
is printed in MID$(NMS$,3,3), which is NAL. The loop goes on in this way,
and the result is that you see on the screen a pyramid of letters formed from
your name. It's quite impressive if you have a long name! If your name is

74 Working with MSX BASIC

short, try making up a longer one. Could you try designing a variation on
this which worked in the opposite way, starting with the full name and
cutting a letter off each side on each pass through the loop?

We looked briefly in Chapter 4 at the idea of coding messages in ASCII,
and reading them from data lines. Figure 5.17 illustrates this use. Line 50
contains an INKEYS loop to make the program wait for you. When you

13 CLS:PRINT

20 PRINT"What does MSX mean?"

30 PRINT

49 FPRINT"Press any key to find out®
59 K$=INKEY%: IF K3$=""THEN S0

60 PRINT

79 FOR J%=1 TO 23:READ NY%

80 PRINTCHRS (N%Z) 3

99 NEXT

1900 END

119 DATA77,97,114,118,101,108,108,111
«+117,115,32,83, 108, 105,99,1067,32,88,9
7,199,112,108, 101

Fig. 5.17.Using ASCll codes to carry a coded message, and then using CHR$
in a loop to obtain the character that corresponds to a code number.

press a key, the loop that starts in line 70 prints 23 characters on the screen.
Each of these is read as an ASCII code from a list, usinga READ...DATA
instruction in the loop. The PRINT CHR$(N%) in line 80 then converts the
ASCII codes into characters and prints the characters, using a semicolon to
keep the printing in a line. Try it! If you wanted to conceal the letters more
thoroughly, you could use quantities like one quarter of each code number,
or 5 times each code less 20, or anything else you like. These changed codes
could be stored in the list, and the conversion back to ASCII codes made
in the program. This will deter all but really persistent de-coders! This
example, incidentally, illustrates the use of READ and DATA inaloop. We
would normally use READ and DATA only for information that we
particularly wanted to keep stored in a program like this.

While we are on the subject of READ and DATA, there’s another twist to
this instruction in the form of RESTORE. RESTORE means that the
DATA list will start again from the beginning. If you READ all of the data,
and then want to read it all again, you will have to have a RESTORE
instruction before the second READ loop. If you didn’t, you would get an
‘Out of data’ error message. RESTORE, however, can do more than this.
Take a look at Fig. 5.18. This offers a kind of menu choice of headings, but
it’s done by using RESTORE followed by a line number. When you pick a
number, it is used in line 40 to carry outa RESTORE command which has a
line number following it. RESTORE 2000, for example, means start reading
DATA at line 2000. Each DATA line contains four items, so that when line

Repeating Yourself 75

19 PRINT"Which list do you want?"®

20 PRINT: INPUT"Number 1 to 3, please
“;A-/.

39 IF A%<t OR AYZ>3 THEN PRINT"Retween
1 and 3 only, please":60T0 1o

42 IF A%Z=1 THEN RESTORE 190¢ ELSE IF

AZ%Z=2 THEN RESTORE 2090 EL.SE RESTORE 3

5 1%0%)

S¢ FOR NZ=1 TO 4:READ A$:PRINTA$:NEXT

&9 END

1099 DATA Austin, Rover, Triumph,Jagu

ar

20090 DATA BMW, Porsche,Mercedes, Opel

3000 DATA Alfa Romeo, Lancia, Fiat, F

errari

Fig. 5.18. How RESTORE can be used to select different DATA lines.

50 is carried out, four items will be read from whichever line has been picked.
It's a useful way of selecting from a number of lists which will be used each
time the program is used.

Loops and arrays

The loop commands of any computer are particularly useful when you have
to deal with array variables. The reason is that you canset up a loop, such as
a FOR N%=1 TO 100 loop, and make the array items use the counter
variable N, as, for example, A%(N%). This can make the actions of filling
or printing an array look very simple pieces of programming. Figure 5.19

1e CLS

20 DIM AL(20):=FOR N%Z=1 TO 20

JI6 AL(NZ)=RND (1) %100+

40 NEXT

90 PRINT

60 PRINTTAB(13)"Marks List”

79 PRINT:FOR NZ=1 TO 20

80 PRINT"Item”:iN%Z;" received";AL(NZL);
" marks."

90 NEXT

Fig. 5.19. An array of subscripted number variables being assigned in a loop.

illustrates this. Lines 10 to 40 generate an (imaginary) set of twenty
examination marks. This is done simply to avoid the hard work of entering
the real thing! Line 20 dimensions the integer number array A% to a
maximum of twenty items. If we had needed only up to ten items, we could

76 Working with MSX BASIC

have dispensed with this DIM line, but it’s always better to include it even
Jfor small arrays, just to remind yourself that you're dealing with an array.
The array variable in line 30 is a subscripted number variable, and the
subscript is the number that is represented by N%. Each item is obtained by
finding a random number between | and 100, and is then assigned to
A%(N%). Twenty of these ‘marks’ are assigned in this way, and then lines 60
to 90 print the list. [t makes for much neater programming than you would
have to use if you needed a separate variable name for each number.
Figure 5.20 extends this another step further. This time you are invited to
type a name and a mark for each of ten items. When the list is complete, the
screen is cleared and a total variable is set to zero in line 70. The list is then

10 CLS:PRINT:CLEAR 500
20 PRINT"Please enter names and marks
1]

3¢ DIM N$(10),A%Z(1@):FOR NZ=1 TO 1e
49 PRINT"Name - "3:INPUT N$(NZ)

50 PRINT"Mark - "3:INPUT AZ(NZ)

69 NEXT

70 CLS:TZ=0

100 PRINTTAB(13)"MARKS LIST"“:PRINT

110 FOR N%=1 TO 10

120 PRINTTAB(2)NS$ (NZL) s TARB(22) AL (NZ)
130 T/=TL+A%ZL(NZL)

140 NEXT

150 PRINT

1660 PRINT"AVERAGE IS"3T%Z/ (N%-1)

Fig. 5.20. Using strings in one array and numbers in another.

printed neatly, and on each pass through the loop the total is counted up (in
line 130) so that the average value can be printed at the end. The important
point here is that it’s not just numbers that we can keep in this array form.
This example uses both a string array (names) and a number array (marks).
Remember that in any program like this. the arrays will have to be
dimensioned correctly. If you don’t know what number to expect when you
write the program, you will have to add a line early in the program which
reads, for example:

INPUT“How many items ";A%:DIM N%(A%),NMS$(A%)

so that the user has to specify how many items there will be in the array. The
only way that an array can be created without dimensioning it is when the
array is created on tape or on disk, and that’s something quite different
which we shall look at later in Chapter 1.

Repeating Yourself 77

Rows and columns

You can imagine an array as a list of items, one after the other, but thereisa
variety of array which allows a different kind of list, called a marrix. A
matrix is a list of groups or items, with all the items in a group related. We
could think of a matrix as a set of rows and columns, with each group taking
up a row, and the items of a group in separate columns. Take a look at Fig.
5.21 to see how this works. We use here a variable N§ which has two

1e CLS

20 FOR NZ=1 7O 3

30 FOR J%=1 TO 2

49 READ N$(NZ,J%L)

SO NEXT J%Z,N%

60 FOR N%Z=1 TO 3

70 PRINTTAB(SINS(NL, 1) TAB{25)NS (NX,2

)

80 NEXT

169 DATA Horse,Foal,Cow,Calf,Dog,Pupp
Y

Fig. 5.21. Making a matrix of rows and columns.

subscript numbers. The first number is the row number, the second is the
column number, and we need two FOR...NEXT loops to read data into this
matrix. This is carried out in lines 20 to 50. Notice the shortened NEXT
J%,N% in line 50, which is a way of writing NEXT J9%:NEXT N&. The
items are then printed in columns by the loop in lines 60 to 80. In this loop,
the variable N9 is used as the row number and we use the column numbers |
and 2. The rows contain animal names, and the columns separate the
different names that we use for adult and for young animals respectively.
Figure 5.22 shows a much more ambitious matrix program. This one uses
a row number for matrix A$ which is 50, and so it has to be dimensioned in
line 10. The idea is to store sets of names and telephone numbers which are
fed in by you in the course of the loop in lines 20 to 60. Once the matrix has
been filled, you can pick an initial letter for a name, and ask the computer to
print out the name and number that it has located. I've left out tests of inputs
(mugtraps) just to keep this example reasonably short, but you would
certainly need some sort of mugtraps, even if only to avoid things like
entering two letters or a whole name at line 100. The choice here is the entry
of a first (capital) letter, and we should really check that this is a capital
letter. If a lower-case letter is entered, it can easily be tested for because its
ASCII code will be more than 96. We can convert a lower-case letter into an
upper-case letter if we subtract 32 from the ASCII code. A step like:

J$=CHRS3$(ASCJ$)—32)

will carry out the conversion.

78 Working with MSX BASIC

10 CLS:DIM A%(50,2)

20 FOR NZ=1 TO Sse

30 PRINT"Name “;:INPUT AS (NZ, 1)

49 PRINT"Tel. No. "j:INPUT A% (N4, 2)
50 PRINT:PRINT

69 NEXT

70 CLS:PRINT

80 PRINT"List Complete"

7@ PRINT:PRINT"Pick an initial letter
==»"2PRINT"Use X to end program. ": =0
100 INFUT J$:IF J$="X" THEN 160

119 FOR N%=1 TQ S5e¢

120 IF J$=LEFT$(A$(N%Z,1),1) THEN PRINT
"Name is "3A%$(NZ,1) :PRINT"Number is "
sAS(NZL, 2) :@=1

130 NEXT

149 IF @=06THEN PRINT"Not found...":FR
INT

150 GOTO 90

160 PRINT"End of program"

Fig. 5.22. Using a name and number matrix for a simple telephone directory
application,

The next part of the program deals with picking a name by specifying an
initial letter. The important point here is that if we specify J, for example, it
should not just pick out the first name that starts with J. That way you
always get Jim, and never get John! In addition, if there is no name in the list
which starts with the letter that you want, you should be told about this. You
should also be told how to leave the loop, because this is a GOTO type of
loop. Line 100 deals with the input, and a choice of X here will end the
program. If any other letter has been selected, a loop starts in line 110. Each
name is selected in turn by the loop, and the first letter of the name is
compared with the letter which was selected. If the two match, then the
whole name and telephone number will be printed. At the same time, a
variable Q (shouldn’t it have been Q%?) is set to . This variable was made
equal to 0 before the loop started, and it is used as a signal that a name has
been found. The NEXT in line 130 marks the limit of this loop.

When line 140 runs, Q will be zero if no names have been found. The
message will then be printed. If a name Aas been found then Q will be 1, and
the message is not printed. In either case, the GOTO 90 in line 150 forces this
selection part of the program to repeat until you type X in response to the
INPUT step.

The next thing that you might need to do with sets of names and numbers
of this type is to record them. You can do this easily with the cassette
recorder, and that’s a subject that we shall look at in the course of Chapter
11. If you have a disk system, however, you automatically have a set of extra
commands which will open up a whole new world of data processing to you.

Chapter Six
Menus and Subroutines

We have seen how RESTORE can be used to make a choice of items that are
to be read from a list. Very often, though, we want to present a user with a
menu on the screen. A menu is a list of choices, usually of program actions.
By picking one of these choices, we can cause a section of the program to be
run. One way of making the choice is by numbering the menu items, and
typing the number of the one that you want to use. We could use a set of lines
such as:

IF K =1 THEN 1000
IF K =2 THEN 2000

and so on. There is a much simpler method, however, which uses a new
instruction ON N9% GOTO, where N% is a number variable, an integer in
this example. You can use any number variable, of course, not just NG.

Figure 6.1 shows a typical menu that uses this instruction. Line 10
removes the KEY display, and clears the screen. Lines 20 to 80 then present
the menu items on the screen, and line 100 invites you to pick one item by
typing its number. The INKEYS$ loop in line 110 keeps the program looking
for a key until you make your choice, and then line 120 tests your choice with
a mugtrap. VAL has to be used, remember, because INKEYS$ produces a
string variable, and you can’t compare a string with a number (nor a rose
with a carrot). By using K%=VAL(KS) you get an integer number variable
K9 which will hold a number that is in the correct form to be compared. If
you had pressed a letter key then K9 would be zero.

The choice is then made in line 130, with the ON K% GOTO instruction.
Now what happens here? If K% equals 1, then the first line number that
follows GOTO is used. If K% equals 2, then the second line number
following GOTO is used, and so on. All that you haveto doisto arrange the
line numbers in the same order as your choices. You needn’t have a list that
looks neat. A line such as ON K% GOTO 50,216,484,714,1000 would be just
as satisfactory so long as these numbers contained the start of routines that
dealt with the menu choices. In this example, the line numbers simply lead to
PRINT instructions so as to keep the example reasonably short. Note that
the last item in a menu like this should always be a QUIT option, meaning

80 Working with MSX BASIC

19 KEY OFF:CLS

20 PRINTTAB(16) "MENU"

39 PRINT:PRINT

49 PRINT"1. Enter names."

359 PRINT"2. Enter phone numbers."

6@ PRINT"3. List all names."

79 PRINT"4. List local numbers."

89 PRINT"S. End program.”

99 PRINT

19090 PRINT"Please select by number 1 t
o 5"

1190 K$=INKEY$: IF K$=""THEN 110

120 KZ=VAL (K$):IF KZ%<1 OR K%>S THEN P
RINT"Incorrect choice— please try aga
1n":60T0 100

136 ON K% GOTO 1000,2006,3000,4000,50
(%]

140 KEY ON:END

150 PRINT"Names here”:G60TO 140

1000 PRINT“"Names here®:G0TO 140

2000 PRINT"Numbers here":G0TO 140
3009 PRINT"List of names.":60T0O 140
4000 PRINT"Local numbers here":60T0 1
49

5009 FPRINT"END":G0TO 140

Fig. 6.7. A menu choice which uses the ON K% GOTO instruction.

one that lets you leave the program. There is nothing quite so frustrating as a
program that won’t let you get away!

This type of menu selection is useful, but an even more useful method
makes use of subroutines. A subroutine is a section of program which can be
inserted anywhere that you like in a longer program. A subroutine is
inserted by typing the instruction word GOSUB, followed by the line
number in which the subroutine starts. When your program comes to this
instruction, it will jump to the line number that follows GOSUB, just as if
you had used GOTO. Unlike GOTO, however, GOSUB offers an auromatic
return. The word RETURN is used at the end of the subroutine lines, and it
will cause the program to return to the point immediately following the
GOSUB.Hgﬂ662ﬂbﬁmmsmm.W%anhemogamrmmJMe20mﬂgm
a phrase to the string variable T$. The next line is GOSUB 1000, which
means that the program must jump to the routine which starts at line 1000.
In this line L%, the number of characters in T$, 1s found. The following line
1010 then prints T$ centred on the screen. Line 1020 consists of the word
RETURN. As the name suggests, this means that the program must return
to a position that is immediately following the GOSUB. In this first case,
thatnwanstohne40.ThmcarﬁesoutanoﬂwrasﬁgnnmntofT$JhBthneto
a string of underline dashes. Once again, calling GOSUB 1000 in line 50 will

Menus and Subroutines 81

ie CLS

20 T$="MSX Computing"”

3o GOSUB 1000

40 T$=STRINGS (LEN(T$),"_")
S50 G0SUB 10900

69 LOCATE 2,4

79 PRINT"Neat, isn’t it?"
80 END

1000 LZ=LEN(T$)

19010 PRINTTAB((37-L%L)/2)5T$
1020 RETURN

Fig. 6.2. Using a subroutine - this is the key to more advanced programming.

cause this new value of TS to be printed centred, and the RETURN this time
makes the program return to line 60. With a GOTO, you are stuck with just
one destination line number, but the RETURN at the end of a GOSUB
makes sure you return to the command which follows the GOSUB. Even if
you have a multistatement line like:

T$=“MENU”:GOSUB 1000:PRINT“NOTES”

then the subroutine will return correctly, in this case to perform the PRINT
action.

Now for its application to menus, Fig. 6.3shows subroutines in use as part
of a (totally imaginary) games program. Lines 10 to 80 offer a choice, and
line 90 invites you to choose. The familiar INKEYS$ and mugtrap actions
follow, and then line 120 causes the choice to be carried out. This time,
however, the program will return to whatever follows the choice. For
example, if you pressed key I, then the subroutine that starts at line 1000 is
carried out, and the program returns to line 120 to check if you might also
want subroutines 2000, 3000, 4000 or 5000. Since the value of K% is still 1,
the program then goes to line 130 and ends. If line 1000 had altered the value
of K%, however, you could find that a second subroutine was selected
following the first one. Never make any other use of the variable name that
you have selected for ON K% GOSUB.

A subroutine is extremely useful in menu choices, but it’s even more
useful for pieces of program that will be used several times in a program.
Take a look at Fig. 6.4 by way of an example. The subroutine is an
elaboration on the INKEYS$ routine. The trouble with INKEYS is that it
doesn’t remind you that it’s in use; there’s no question mark printed as there
is when you use INPUT. The subroutine in lines 1000 to 1040 remedies that
by causing an asterisk to flash while you are thinking about which key to
press. The asterisk is flashed by alternately printing the asterisk and some
delete step. According to some of the MSX manuals, CHR $(8) should make
the cursor backspace and delete the character under it. On the machine
which T used, the cursor backspaced but did not delete. The line 1030

82 Working with MSX BASIC

1@ CLS:PRINT

20 PRINTTAB(B) "Choose your monster."
3@ PRINT

49 PRINTTAB(2)"1. Vampire."

00 PRINTTAB(2) "2. Werewolf."

60 FPRINTTAB(2)"3. Zombie." -
79 PRINTTAB(2)"4. Sgt. Major."

80 PRINTTAB(2)"5. Flying picket."

7@ PRINT:PRINT"Select by number, plea
se":PRINT: PRINT

199 GOSUB 190@a:REM INKEY$ ROUTINE
11@ IF KZ{1 OR KZ>5S THEN PRINT"Faulty
selection— 1 to 5 only—-":PRINT"Pleas
e try again.":60TO190

126 ON K% GOSUB 1000,20090,3000,4000,5
200

130 PRINT:PRINT"Want another choice?
Type y or n"

149 GOSUB 19060: IF K$="y" OR K$="Y" T
HEN 19

150 END

1009 PRINT"Blood, blood, bootiful blo
od" :RETURN

2000 PRINT"Howl, snarl, gnash":RETURN
3099 PRINT"I obey, master, I obey":RE
TURN

49000 FRINT"You “orrible little man":R
ETURN

D@0 PRINT"Blood, howl, I obey, smash"”
:RETURN

10000 K$=INKEY$: IF K$=""THEN 10096 EL
SE KZ=VAL (K%)

1@019 RETURN

Fig. 6.3. Amenuchoice for animaginary game that makes use of subroutines.

therefore uses CHRS$(8) to backspace, CHR$(32) to print a space, and
CHR$(29) to backspace again. On this machine, I found that CHR$(8) and
CHR3$(29) had exactly the same effect. To make the rate of flashing

reasonably slow, I’'ve added another subroutine, a delay in line 2000.
While we’re on the subject of menus, there’s another subroutine, in Fig.

6.5, which can make a menu look a lot more interesting. This is a visual
menu choice, and its use brings several advantages to your menus. One 1s
that you don’t need to have the items of the menu numbered, because you
don’t choose by number. Instead, a little arrow flashes next to the first item
of the menu. This arrow can be shifted by using the cursor keys, the ones
which are marked with the vertical up or down arrows. Since the program
makes it impossible to shift the arrow beyond the menu items, no sort of
testing or mugtrapping of the answer is needed. The choice is passed back to

Menus and Subroutines

19 CLS

20 FRINT"Choose 1 or 2Z2,please”
36 G0OSUB 1900

49 PRINT"Your choice was "“jK$
50 END

19000 K$=INKEY$

1010 1IF K$<>""THEN RETURN

1020 PRINT"*"; : GOSUBZ99O

19030 PRINT CHR3{(8)iCHR%(32):CHR$ (293
: GOSUE Zoeo

194090 GOTO 1000

2000 FOR J=1 T0O 209:NEXT:RETURN

83

Fig. 6.4. Aflashing asterisk subroutine. The asterisk flashes until you press a

key.

19 CLS:KEY OFF

29 T$="Your Choice"

3@ STZ=2:NRZ=4

49 GOSUB 100900

S0 LOCATEZ, 1Z2:PRINT"You chose option
"3 CHL

60 KEY ON:END

10000 PRINTTAB((I7-LEN(T$))/2):T%
19916 FOR J%=1 TO NR%Z

19020 LOCATE 3,5T%Z+J%-1

10030 READ MENUS:PRINT MENUS

19940 NEXT:PS%Z=5T%Z

190959 LOCATE 1,PSL:PRINTCHR%(175)
10060 FOR JZ=1 TO 200:NEXT

10070 LOCATE 1,PSZ:PRINTCHR® (32)
190080 FOR J%=1 TO 200:NEXT

19090 KH=INKEY$

10109 IF K$=CHR$(32) THEN CHZ=FPSZ-ST%Z+
1:RETURN

12119 IF K$=CHR$ (39) THEN FSL=PSZi-1
10120 IF K$=CHR%$(31) THEN PS%L=PSZ+1
16139 IF PSL>STZ+NRZ—-1 THEN PSZ=ST%
190140 IF PSL<{STATHEN PSZL=STL+NR%Z-1
10150 GOTO 10050

19016® DATA Input Data,Output Data,Che
ck Data,Alter Data

Fig. 6.5. A visual menu subroutine. You use the cursor keys to move the
arrow, then press the spacebar when the arrow points to the item that you
want. The subroutine has been written so that you can easily use this in your
own programs.

the main routine as a number CH%, which you can then use in a line such as :
ON CH9% GOSUB 1000,2000,3000,4000 and so on. Try it for yourself, and
see how much better it looks as compared to the traditional menu.

84 Working with MSX BASIC

The subroutine needs to have some values passed to it. The title is passed
as T§, and two integer numbers are needed also. One of these is ST%, which
is the line at which the first item of the menu will appear. The other is NR %,
which is the number of items on the menu. The actual menu items are placed
in a DATA line which can be anywhere in the program. If you have more
than one menu, you can use RESTORE to get the correct set of data items.
Once these quantities have been assigned, the subroutine can be called. In
the example, the numbers have been set up to start on line 2 and use four
items only.

The subroutine starts in line 10000 to 10040 by printing the title, centred,
and then reading the menu items and printing them. Variable ST%is used to
make sure that the items are placed on the correct lines. The LOCATE
command makes sure that the items are all tabbed to column number 3 (the
fourth column, since counting starts at 0, remember). At the end of line
10040, using PS%=STY% passes the value of ST% (four in this example) to
another variable PS% which will be used to control the position of the
arrow-head. Line 10050 then starts a loop which will print the arrow-head,
wait, delete the arrow, wait, and then look for a key being pressed. If this key
is the spacebar, then the program assigns CH% and returns. If the key is a
cursor key, the arrow-head is moved. The movement is then checked to
make sure that it cannot be above or below the menu items.

Line 10050 to 10080 print the arrow-head, wait, print a space, and wait
again. The pause could have been put into another subroutine, and if you
have a pause subroutine in your program anyway you would use it in place
of lines 10060 and 10080. Line 10090 is the INKEYS$ line - note that we don’s
use IF K$=*” THEN 10090 here, because we do not want the program to
hang up at this point. If the program hangs up, then the arrow-head doesn’t
flash! The next three lines 100100 to 10120, test K$. If this was the spacebar
(ASCII code 32) then the value of CHY is obtained from PS%—ST%+1.
The idea is that ST is the number of the first screen line which contains a
menu item, and PS% is the one that the arrow points to. If the arrow is still
on the first line, PS%—ST%+1 is 1-14+1=1; if the arrow is on the second
line, then PS%—ST%+1 is 2—14+1=2 and so on. If you only use the menu
subroutine once, then you can substitute numbers in place of STY% and
NR%. Moving on, lines 10110 and 10120 test for the cursor keys, and alter
the value of PS% accordingly. Lines 10130 and 10140 then test the value of
PS%. If this has gone out of limits, then it is returned to the opposite limit. If
PSY% would place the arrow above the top menu item, it’s placed instead at
the bottom item. If the value of PS% is such that it would put the arrow
below the bottom item, then it is returned to the top. This sort of action is
called wraparound. Finally, line 10150 is the GOTO which completes the
loop. The loop is broken only when the spacebar is pressed. You could, of
course, alter this so that the ESC or TAB or any other key operated this
action. Now try it out in your own programs!

Menus and Subroutines 85

Rolling your own

You can get a lot of enjoyment from your MSX computer when you useit to
enter programs from cassettes that you have bought, or from plug-in
cartridges. You can obtain even more enjoyment from typing in programs
that you have seen printed in magazines. Even more rewarding is modifying
one of these programs so that it behaves in a rather different way, making it
do what suits you. The pinnacle of satisfaction as far as computing is
concerned, however, is achieved when you design your own programs.
These don’t have to be masterpieces. Just to have decided what you want,
written it as a program, entered it and made it work is enough. It’s 100%
your own work, and you’ll enjoy it all the more for that. After all, buying a
computer and not programming it yourself is like buying a BMW and
getting someone else to drive it for you.

Now I can’t tell in advance what your interests in programs might be.
Some readers might want to design programs that will keep tabs on a stamp
collection, a record collection, a set of notes on food preparation or the
technical details of vintage steam locomotives. Programs of this type are
called database programs, because they need a lot of data items to be typed
in and recorded. On the other hand, you might be interested in games,
colour patterns, drawings, sound, or other programs that require shapes to
move across the screen. Programs of that type need instructions that we
shall be looking at in detail in the next few chapters. What we are going to
look at in this section is how a program can be designed using subroutines
because this is a design method that can be used for all types of programs.
Once you can design simple programs of this type you can progress, using
the same methods, to design your own graphics and sound programs.
Remember, though, that most of the very fast moving or elaborate graphics
programs that you see are not written in BASIC. The reason is that BASIC
is too slow to allow fast movement, or the control of lots of moving objects.
These arcade-type programs that you can buy are written in machine code, a
set of number-coded instructions direct to the microprocessor that is the
heart of the computer. This bypasses BASIC altogether, and is very much
more difficult. If you learn how to design programs in BASIC, however, you
will be able to learn machine code later. All you need is experience - a lot of
it.

Two points are important here. One is that experience counts in this
design business. If you make your first efforts at design as simple as possible,
you’ll learn much more from them. That’s because you’re more likely to
succeed with a simple program first time round. You’ll learn more from
designing a simple program that works than from an elaborate program that
never seems to do what it should. We have already dabbled with the design
of simple programs, and I want to show you that this is all you ever need!
The second point is that program design has to start with the computer
switched off, preferably in another room! The reason is that program design

86 Working with MSX BASIC

needs planning, and you can’t plan properly when you have temptation in
the shape of a keyboard in front of you. Get away from it!

Put it on paper

We start, then, with a pad of paper. I use a student’s pad of A4 which is
punched so that I can put sheets into a file. This way, I can keep the sheets
tidy, and add to them as I need. I can also throw away any sheets [don’t
need, which is just as important. Yes, I said sheets! Even a very simple
program is probably going to need more than one sheet of paper for its
design. If you then go in for more elaborate programs, you may easily find
yourself with a couple of dozen sheets of planning and of listing before you
get to the keyboard. Just to make the exercise more interesting, I’ll take an
example of a program, and design it as we go. This will be a very simple
program, but it will illustrate all the skills that you need.

Start, then, by writing down what you expect the program to do. You
might think that you don’t need to do this, because you know what you
want, but you'd be surprised. There’s an old saying about not being able to
see the wood for the trees, and it applies very forcefully to designing
programs. If you don’t write down what you expect a program to do, it’s
odds on that the program will never do it! The reason is that you get so
involved in details when you start writing the lines of BASIC that it’s
astonishingly easy to forget what it’s all for. If you write it down, you’ll have
a goal to aim for, and that’s as important in program design as it is in life.
Don't just dash down a few words. Take some time about it, and consider
what you want the program to be able to do. If you don’t know, you can’t
program it! What is even more important is that this action of writing down
what you expect a program to do gives you a chance to design a properly
structured program. Structured in this sense means that the program is put
together in a way that is a logical sequence, so that it is easy to add to,
change, or redesign. If you learn to program in this way, your programs will
be easy to understand, take less time to get working, and will be easy to
extend so that they do more than you intended at first.

As an example, take a look at Fig. 6.6. This shows a program outline plan
for a simple game. The aim of the game is to become familiar with the names
of animals and their young. The program plan shows what I expect of this
game. It must present the name of an animal, picked at random, on the
screen, and then ask what the name of its young is. A littlc bit more thought
produces some additional points. The name of the young animal will have to
be correctly spelled. A little bit of trickery will be needed to prevent the user
(son, daughter, brother, or sister) from finding the answers by typing LIST
and looking for the DATA lines. Every game must have some sort of scoring
system, so we allow one point for each correct answer. Since spelling is
important, perhaps we should allow more than one try at each question.

Menus and Subroutines 87

Aims

Present the name of an animal on the screen.

Ask what its young is called.

Reply must be correctly spelled.

User must not be able to read the answer from a listing.

Give one point for each correct answer.

Allow two chances at each question.

Keep a track of the number of attempts.

Present the score as the number of successes out of the number of attempts.
Pick animal names at random.

O 0NN R =

Fig. 6.6. A program outline plan. This is your starter!

Finally, we should keep track of the number of attempts and the number of
correct answers, and present this as the score at the end of each game. Now
this is about as much detail as we need, unless we want to make the game
more elaborate. For a first effort, this is quite enough. How do we start the
design from this point on?

The answer is to design the program in the way that an artist paints a
picture or an architect designs a house. That means designing the outlines
first, and the details later. The outlines of this program are the steps that
make up the sequence of actions. We shall, for example, want to have a title
displayed. Give the user time to read this, and then show instructions.
There’s little doubt that we shall want to do things like assign variable
names, dimension arrays, and other such preparation. We then need to play
the game. The next thing is to find the score, and then ask the user if another
game is wanted. Yes, you have to put it all down on paper! Figure 6.7 shows
what this might look like at this stage.

Foundation stones

Now, at last, we can start writing a chunk of program. This will just be a
foundation, though. What you must avoid at all costs is filling pages with
BASIC lines at this stage. As any builder will tell you, the foundation counts
for a lot. Get it right, and you have decided how good the rest of the
structure will be. The main thing you have to avoid now is building a wall
before the foundation is complete!

Figure 6.8 shows what you should aim for at this stage. There are only
fourteen lines of program here, and that’s as much as you want. This is a
foundation, remember, not the Empire State Building! It’s also a program
that is being developed, so we’ve hung some ‘danger - men at work’ signs
around. These take the form of the lines that start with REM. REM means
REMinder, and any line of a program that starts with REM will be ignored

88 Working with MSX BASIC

Title
Instructions

Repeat -

. Pick random number
Name of animal

Use to select from array

Ask for name of young { Use INPUT

Select ASCII codes from array
Compare with correct name Decode to answer

Compare

+1 if correct
Score Try again if not

Abandon after second attempt

Ask if another wanted { YorN
Until answer not ‘Y’ or ‘y’

End

Fig. 6.7. The next stage in expanding the outline.

by the computer. This means that you can type whatever you like following
REM, and the point of it all is to allow you to put notes in with the program.
These notes will not be printed on the screen when you are using the
program, and you will see them only when you LIST. In Fig. 6.8, I have put
the REM notes on lines which are numbered just [more than the main lines.

19 CLS:GOSUB 1600
11 REM Title

20 GOSUB 12709

21 REM Instructions
36 BGOSUB 1400

31 REM Setup

40 GOSUB 2000

41 REM Play

S0 GOSUB 3Jooa

51 REM Score

60 GOSUR 49009

&1 REM Another?

79 IF INSTR("YESyes",k$;< >0 THEN 40
80 END

Fig. 6.8. A core or foundation program for the example.

Menus and Subroutines 89

This way, 1 can remove all the REM lines later. How much later? When the
program is complete, tested, and working perfectly. REMs are useful, but
they make a program take up more space in memory, and run slightly
slower. I always like to keep one copy of a program with the REMs in place,
and another ‘working’ copy which has no REMs. That way I have a fast and
efficient program for everyday use, and a fully-detailed version that I can use
if I want to make changes.

Let’s get back to the program itself. As you can see, it consists of a set of
GOSUB instructions, with references to lines that we haven’t written yet.
That’s intentional. What we want at this point, remember, is foundations.
The program follows the plan of Fig. 6.7 exactly, and the only part that is
not committed to a GOSUB is the IF in line 70. What we shalldo is to write a
subroutine which will use INKEY$ to look for a y or Y being pressed, and
line 70 deals with the answer. What’s the question? Why, it’s the Do you
want another game step that we planned for earlier.

Line 70 makes use of that INSTR keyword which we looked at earlier. By
testing with INSTR(“YESyes”,K$), we will get 1 if Y is pressed and 4 if y is
pressed. If K$ is neither y nor Y, then INSTR gives 0, meaning that the string
we are seeking is not contained in YESyes. Simple, but very useful. We
could have used INSTR(“Yy”,K$) in this example, since only one letter is
being tested. I have used the full form here, because it makes the subroutine
more generally useful.

Take a good long look at this fourteen-line piece of program, because it’s
important. The use of all the subroutines means that we can check this
program easily - there isn’t much to go wrong with it. We can now decide in
what order we are going to write the subroutines. The wrong order, in
practically every example, is the order in which they appear. Always write
the title and instructions last, because they are the least important to you at
this stage. In any case, if you write them too early, it’s odds on that you will
have some bright ideas about improving the game soon enough, and you
will have to write the instructions all over again. A good idea at this stage is
to write a line such as:

9 GOTO 30

which will cause the program to skip over the title and instructions. This
saves a lot of time when you are testing the program, because youdon’t have
the delay of printing the title and instructions each time you run it.

The next step is to get to the keyboard (at last, at last!) and enter this core
program. If you use the GOTO step to skip round the title and instructions
temporarily, you can then put in simple PRINT lines at each subroutine line
number. We did this, you remember, in the program of Fig. 6.1, so you
know how to go about it. This allows you to test your core program and be
sure that it will work before you go any further.

The next step is to record this core program and then keep adding to the
core. If you have the core recorded, then you can load this into your

90 Working with MSX BASIC

computer, add one of the subroutines, and then test. When you are satisfied
that it works, you can record the whole lot on another cassette. Next time
you want to add a subroutine, you start with this version, and so on. This
way, you keep tapes of a steadily growing program, with each stage tested
and known to work. Again, this is important. Very often, testing takes
longer than you expect, and it can be a very tedious job when you have a
long program to work with. By testing each subroutine as you go, you know
that you can have confidence in the earlier parts of the program, and you can
concentrate on errors in the new sections.

Subroutine routine

The next thing we have to do is to design the subroutines. Now some of these
may not need much designing. Take, for example, the subroutine that is to
be placed in line 4000. This is just our familiar INKEY$ routine, along with a
bit of PRINT, so we can deal with it right away. Figure 6.9 shows the form it
might take. The subroutine is straightforward, and that’s why we can deal
with it right away! Type it in, and now test the core program with this
subroutine in place.

4900 PRINT"Would you like another one
?ll

4912 PRINT"Please answer y or n."
4020 K$=INKEY$:IF K$=""THEN 4020
4930 RETURN

Fig. 6.9. The INKEY$ subroutine for line 4000.

Now we come to what you might think is the hardest part of the job — the
subroutine which carries out the Play action. In fact, you don’t have to learn
anything new to do this. The Play subroutine is designed in exactly the same
way as we designed the core program. That means we have to write down
what we expect it to do, and then arrange the steps that will carry out the
action. If there’s anything that seems to need more thought, we can relegate
it to a subroutine to be dealt with later.

As an example, take a look at Fig. 6.10. This is a plan for the Play
subroutine, which also includes information that we shall need for the
setting-up steps. The first item is the result of a bit of thought. We wanted,
you remember, to be sure that some smart user would not cheat by looking
up the answers in the DATA lines. The simplest deterrent is to make the
answers in the form of ASCII codes. It won’t deter the more skilled, but it
will do for starters. I've decided to put one answer in each DATA line in the
form of a string of ASCII codes, with each code written as a three-figure
number. Why three figures? Well, the capital letters will use two figures only,
the small letters three, so making them all into three figures simplifies things.

Menus and Subroutines 91

Start
l
Find number (random)
|
Select array item = animal name
Print it
|
@ Ask for voung
|
Tal.¢ input
|
Select answer array item

: Read array in sets of 3 digits

Select 3 digits
Decode with CHRS
Repeat until word build up

Decode it
|

Compare
|
If GO = ¢ and correct SC=SC+1:TR+1
|
IF GO = ¢ and not correct, GO=1, repeat from @
|

If GO =1 and correct SC=SC+[:TR=TR+1
|
If Go=1 and not correct : TR=TR+1
|
End

Fig. 6.10. Planning the Play subroutine.

You’ll see why later — what we do is to write a number like 86 as 086, and so

on. That’s the first item for this subroutine.
The next one is that we shall keep the names of the animals in an array.

This has several advantages. One is that it's beautifully easy to select the
name of an animal at random if we do this. The other is that it also makes it
easy to match the answers to the questions. If the questions are items of an
array whose subscript numbers are | to 10, then we can place the answers in
DATA lines, one set of numbers in each data line, and read these also as a
string array. The alternative would be to keep the names and the answers in
DATA lines, and use RESTORE. This is not quite so neat, however.
The next thing that the plan settles is the names that we shall use for
variables. It always helps if we can use names that remind us of what the

92 Working with MSX BASIC

variables are supposed to represent. In this case, using SC% for the score
and TR% for the number of tries look self-explanatory. The third one,
GO% is one that we shall use to count how many times one question is
attempted. Finally, we decide on a name for the array that will hold the
animal names - QS.

Play for today

Figure 6.11 shows what I've ended up with as a result of the plan in Fig. 6.10.
The steps are to pick a random number, use it to print an animal name, and

2000 GOY=0:VZ=INT (10*#RND(1))+1

2010 CLS:PRINT"The animal is — ";Q@%(V
Z)

2020 PRINT:PRINT"The young is called

2030 INPUT X$: TRZ=TR%Z+1

20490 GOSUB S00Q

20431 REM Find correct answer
2059 RETURN

Fig. 6.11. The program lines for the Play subroutine.

then find the answer. That’s all, because the checking of the answer and the
scoring is dealt with by another subroutine. Always try to split up the
program as much as possible, so that you don’t have to write huge chunks at
atime. Asitis, I've had to put another subroutine into this one to keep things
short.

We start the subroutine at line 2000 by ‘clearing a variable’. The size of
GO% is set to 0, to make sure that this variable has the correct size each time
this subroutine is started. The second part of line 2000 then picks a number,
at random, lying between 1 and 10. Lines 2010 to 2030 are straightforward
stuff. We print the name of the animal that corresponds to the random
number, and ask for an answer, the young of that animal. The last section of
line 2030 counts the number of attempts. This is the logical place to put this
step, because we want to make the count each time there is an answer. Now
it’s chicken-out time. I don’t want to get involved in the reading of ASCII
codes right now, so I'll leave it to a subroutine, starting in line 5000, which
I'll write later. The REM in line 2041 reminds me what this new subroutine
will have to do, and the Play subroutine ends with the usual RETURN.

Down among the details

With the Play subroutine safely on tape, we can think now about the details.
The first one to look at should be one that precedes or follows the Play step,

Menus and Subroutines 93

and I've chosen the Score routine. As usual, it has to be planned, and Fig.
6.12 shows the plan. Each time there is a correct answer, the number
variable SC% will be incremented, and we can go back to the main program.

Increment SC

Answer correct Increment TR { Next question
GO=0

Answer incorrect GO=0 Make GO=1
Get another answer

Make GO=0

Answer incorrect GO=1 .
Move to next question

Fig. 6.12. Planning the Score subroutine.

More is needed if the answer does not match exactly. We need to print a
message, and allow another go. If the result of this next go is not correct,
that’s an end to the attempts. At this point, you might later want to include
some sound. We could have a short beep to announce a mistake, and a long
one for a correct answer. Write it down!

Figure 6.13 shows the program subroutine that has been developed from
this plan. Line 3000 deals with a correct answer. Since we need to print a
message which would not fit in a line, we use GOTO 3200 to finish the job.
The GOTO 3040 in line 3210 ensures that if the answer was correct, the rest
of the subroutine is skipped, and the subroutine returns. If the answer is not
correct, though, line 3010 swings into action. This tests the value of GO%
and if it is zero causes a jump to line 3300 to print its message and give

3000 PRINT:IF X$=A$ THEN SCZ=5CL+1:G60

TO 3200

3010 IF GO%L=9 THEN GOTO 3300

3020 G0%=0:PRINT"No luck — try the ne

xt one."

30390 FOR G=1 TO 1000:NEXT

39049 RETURN

3200 PRINT"Correct— your score is now
"3s5C%

3219 PRINT"in "3 TR%Z;:; " attempts. ":60S

UB 7900:G0T0O 040

3309 PRINT"Not correct— but it might

be your"

3319 PRINT"spelling! You get another

go free.":TRLZ=TR%-1

3326 GOSUB 7000:60%=1:60SUB 2912:G60T0
3000

Fig. 6.13. The Score subroutine written.

94 Working with MSX BASIC

further instructions. Line 3320 calls the subroutine at line 2010 again so that
the user can make another answer entry. The GOTO 3000 at the end of line
3320 then tests this answer again.

Now there’s a piece of cunning here. The number variable GOY starts
with a value of 0. When there is a correct answer, however, and GO% is still
0, line 3010 is carried out. One of the actions of line 3320, however, is to set
GOY% to 1. When you answer again, with GO%=1, line 3000 will be used,
and if your second answer is wrong, line 3010 cannot be used, because GO%
is not zero. The next line that is tried, then, is 3020. This puts GO% back to
zero for the next round, prints a sympathetic message, pauses, and then lets
the subroutine return in line 3040.

Now that we’ve got the bit between our teeth, we can polish off the rest of
the subroutines. Figure 6.14 shows the subroutine that deals with

1490 TRZ=0:S5C%=0:G60%=0: V4Z=RND (-TIME)
1419 DIM Q%{(10) ,A%$(10)

1420 FOR JZ%Z=1 TO 10:READ @%${(J%L) :NEXT
1430 FOR J%=1 TO 1@:READ A% (J%) :NEXT
1440 RETURN

Fig. 6.714. The dimensioning and array subroutine.

dimensioning and arrays. Line 1400 sets all the variables for the scoring
system to zero, and makes sure that the same sequence is not repeated each
time you use the program. Line 1410 dimensions the array Q$ that will be
used for the names of the animals, and A$ which will be used for the
numbers that give the answers. Line 1420 then reads the names from a data
list into the array Q$, and line 1430 reads the numbers into A$ - and that’s it!
We can write the DATA lines later, as usual.

Next comes the business of finding the answer. We have planned this, so it
shouldn’t need too much hassle. Figure 6.15 shows the program lines. The
variable V9 is the one that we have selected at random, and it’s used to select
one of the strings of ASCII numbers, A$(V%). Since each number consists
of three digits, we want to slice this string three digits at a time, and that’s
why we use STEP 3 in the FOR...NEXT loop in line 5000. Line 5010 then
builds up the answer string, which we call A$. Remember that AS$, used
alone, is not confused with the A$(V9) array. AS is set to a blank in the first
part of line 5000 to ensure that we always start with a blank string, not with

S000 A$="":FOR J%=1 TO LEN(A%$(VZ))STE
P3

5019 AS=A%$+CHR$ (VAL (MID$ (AS (VL) ,J%, 3)
) Y aNEXT

5020 RETURN

Fig. 6.15. Checking the answer.

Menus and Subroutines 95

the previous answer, which would also be AS. The string A$ is then built up
by selecting three digits, converting to the form of a number by using VAL,
then to a character by using CHRS. Remember that when you have a lot of
brackets like this, you read from the innermost set to the outermost. This
character is then added to AS$, and then continues until all the numbers in
the string have been dealt with. That’s the hard work over. Figure 6.161s the

1200 CLS:PRINTTAB(12) "INSTRUCTIONS"
1210 PRINT:PRINTTAB(2) "The computer w
ill supply you with"

1220 PRINT"the name of an animal. You
should "

12390 PRINT"type the name of its yvoung
- and "

1249 PRINT"make sure that your spelli
ng is "

1252 PRINT “"correct, and that you sta
rt each "

1269 PRINT "name with a capital lette
r. The"

1279 PRINT"computer will keep score f
or you."

1280 PRINT"You get two shots at each

name. "

1290 PRINT:PRINT"Press the spacebar t
o start."”

1300 IF INKEY$<>" " THEN 13060 ELSE RE
TURN

Fig. 6.16. The instructions. Always leave these until almost finished.

subroutine for the instructions, and Fig. 6.17 is the title subroutine. The title
lines include a pause, and have been written with a SCREEN 1 type of
display. We’ll deal with this in more detail in Chapter 7 - it gives slightly
larger letters which are more suited to a heading. Finally, Fig. 6.18 shows the
DATA lines.

Now we can put it all together and try it out. Because it’s been designed in
sections like this, it’s easy for you to modify it. I have chosen a very simple
theme just for this purpose. You can use different DATA, for example. You
can use a lot more data — but remember to change the DIM inline 1410. You
can make it a question-and-answer game on something entirely different,
just by changing the data and the instructions. You can add some sound

1096 SCREEN 1
1919 PRINTTAB(8) "Young Animals"
1020 GOSUB 7000:SCREEN @:RETURN

Fig. 6.17. The title program lines.

96 Working with MSX BASIC

6000 DATA Dog,Cat,Cow, Horse,Hen,Fox,K
angaroo, Goose,Lion,Pig

6001 DATA 980117112112121

6002 DATA 075195116116101110
6003 DATA 067097198102

6004 DATA 070111097108

6005 DATA 967194105099107101110
60056 DATA 967117098

6907 DATA @74111101121

6908 DATA ©71111115108105110103
6099 DATA 967117098

6010 DATAVE01051031081011146

7000 FOR @=1 TO 3000:NEXT:RETURN

Fig. 6.18. The DATA lines that are needed, along with a time delay subroutine.

effects, for example, or add more interesting graphics. One major fault of
the program is that once an item has been used, it can be picked again,
because that’s the sort of thing that RND can cause. You can get round this
by swapping the item that has been picked with the last item (unless it was
the last item), and then cutting down the number that you can pick from.
For example, if you picked number 5, swap numbers 5 and 10, then pick
from 9. This means that the 10*RND(1)+1 step will become D9%*RND
(I)+1, where DY starts at 10, and is reduced by 1 each time a question has
been answered correctly.

There’s a lot, in fact, that you can do to make this program into something
much more interesting. The reason that 1 have used it as an example is to
show what you can design for yourself at this stage. Take this as a sort of
BASIC ‘construction set’ to rebuild any way you like. It will give you some
idea of the sense of achievement that you can get from mastering your MSX
computer. As your experience grows, you will then be able to design
programs that are very much longer and more elaborate than this one by a
long way. By that time, you’ll be thinking of adding a printer and a disk drive
to your MSX computer. Go ahead; they will open up a whole new world of
MSX computing to you.

Chapter Seven

Special Effects and
Geometrical Shapes

Any modern computer is expected to be able to produce dazzling displays of
colour and other special effects. The MSX computer is no exception, and in
this chapter, we’ll start to look at some of the effects that are possible. To
start with, we have to know some of the terms that are used, and the first of
these is graphics. Graphics means pictures that can be drawn on the screen,
and all modern computers have instructions that allow you to draw such
patterns. In connection with these patterns, you’ll see the words low
resolution and high resolution used. Resolution isn’t such an easy term to
explain. Imagine that you are creating pictures on a paper sheet about eleven
inches across by eight inches deep. That’s roughly the size of a TV screen that
is described as being a 14 inch screen (it’s about 14 inches diagonally!).

Now if you are asked to create the pictures by using rectangles of coloured
paper, you are dealing with picture-making in a way that is very similar to
the way that the computer operates. Suppose that you are allowed only 888
pieces of paper, of such a size that all 888 put into place will fill the screen.
You couldn’t draw very finely detailed pictures with this comparatively
small number of large pieces, and this is what we mean by low resolution. On
the other hand, if you were provided with pieces so small that you would
need 49152 of them to fill an entire screen size, you could produce very much
more detailed pictures. This is what we mean by high resolution. The MSX
computer has both low and high resolution graphics available, and the
figures that I have used correspond to the size of the blocks that the MSX
computer uses. In this chapter, we're going to deal with the low resolution
graphics, and some of the commands for the high resolution graphics of the
MSX computer. There are three points in particular that we have to look at.
These are how to obtain graphics characters, how to place them on the
screen, and how to make shapes of our own design.

Keyboard graphics

The graphics shapes that are illustrated in the MSX computer manuals can
all be obtained by pressing keys on the keyboard. The difference is that you

98 Working with MSX BASIC

have to press the graphics key, labelled GRAPH, as well. You can obtain
another set of graphics characters if you press the SHIFT key in addition to
the GRAPHICS key and a letter/number key. These graphics characters
can be printed in the same way as you print words, by using the PRINT
command, followed by a quote, then typing the graphics characters, then
ending with another quotemark. If you want to use the characters to make
fancy underlining, or to provide shapes to identify menu choices, this is one
way to do it. Unfortunately, I can’t illustrate this in a program, because
printers generally won’t display these shapes as they appear on the screen.

The character codes

The alternative method, which allows us a lot more scope for illustration is
to use the ASCII codes for the characters. These are shown in the MSX
computer manuals as well, but it’s not very easy to see in some manuals what
numbers give you the graphics shapes. The program in Fig. 7.1 will remind

10 CLS:FOR N%Z=192 TO 223 STEP 16

20 FOR J7=0 TO 15

30 PRINTCHR$ (JZ+NZ) 3" "3 :NEXT

40 PRINT: PRINT:NEXT

50 FOR NZ=64 TO 95 STEP 16

&9 FOR J7%=0 TO 15

7¢ PRINTCHR$ (1) 3CHR$(JZ+NZL) 3" "3 :NEXT
80 PRINT:PRINT:NEXT

Fig. 7.1. A program which prints the graphics shapes on to the screen.

you of them. Only certain code numbers are used for graphics, and there are
two sets. One set uses ASCII code numbers 192 to 223 (32 characters
altogether), and the other set uses ASCII codes 64 to 95, another 32
characters. These codes, 64 to 95 are normally used for letters, and to get the
graphics shapes you have to precede each code with CHR$(1). The effect of
PRINT CHRS$(1) is to make the computer switch to graphics for a code in
the range 64 to 95, and this is the effect of pressing the GRAPHICS key. If
you look at this second set of graphics closely, though, you’ll find that some
of the shapes look incomplete. In particular, the face shapes seem to have a
slice taken out of the right-hand side. This is because the computer, when it
is switched on, defaults to a ‘text screen’. In other words, it automatically
sets up the screen so as to print words and numbers, rather than graphics
symbols. Since the letters and digits do not need so much memory for each
character, they can be displayed fully, but the graphics shapes cannot. You
can get round this by switching to a different screen layout, one which allows
fewer characters per line, but which displays the graphics characters fully.
This is done by typing SCREEN 1. Try it before you run the program of Fig.

Special Effects and Geometrical Shapes 99

7.1, and see the difference. From now on, then, each graphics program will
use SCREEN 1 (or one of the others which we’ll come to later) in place of the
‘text screen’, which is SCREEN 0. If you want to switch back to the text
screen, you need only type SCREEN 0 (then RETURN). A SCREEN
command will have the effect of clearing the screen as well as changingit, so
CLS isn’t needed after a SCREEN 1 or SCREEN 0.

You can do some ornamental work with these shapes if you use the grid of
Fig. 7.2 for planning. It shows 32 squares across the screen because it is

Normal width

{

DT WO~ D0
STrNOITHOrOOI-ARTIReRR2FTSARILNERNEZIZS

T G G G g g g Y
CONONHBWN—-BOONONLWN=-S

Normal 29
depth

[)
Py

8R

Fig. 7.2. A planning grid for the graphics shapes.

possible to choose to have up to 32 characters of screen width with
SCREEN 1. You get 27 characters per line each time you first select
SCREEN 1 on the MSX computer, but you can make this 32 by typing:
WIDTH 32. You can, incidentally, also alter the text screen to up to 40
characters per line with the WIDTH command. The choice exists so as to
allow you to use practically any TV with the MSX computer, including ones
which put the 32nd character on the SCREEN 1 display right at the edge of
the screen! You will have to find out for yourself what limits of width you
can use. If you are in any doubt, simply leave it alone, and the computer will
select 37 characters per line for SCREEN 0 and 27 characters per line for

SCREEN 1.
Each square in the grid is the position for a character, and if you draw

what you want on a piece of tracing paper placed over this grid, then you can
plan what the shape will look like on the screen. There are three ways of
programming this. One is to print each line of shapes separately. Another

100 Working with MSX BASIC

way is to print in a loop, using code numbers that are stored ina DATA line.
A third way is to place all of the characters into a string, just as you can type
words into a string.

Yes, an illustration would help. Figure 7.3 shows a design, and how it is
planned. It might be an emblem which you want to show on the screen. Now

93 94
N/

93, 68 — — 68,94
94, 68 — — 68, 93
/ \

94 93

Fig. 7.3. A design which uses the graphics shapes.

you can simply write a program which prints each CHRS value in the right
place, as Fig. 7.4 shows. This works, but it’s clumsy programming, because
you have to type CHRS$(1) so many times. You can make this easier by using

19 SCREEN 1

20 CLS:FPRINT:PRINT

39 PRINTTAB(S)3CHR% (1) 5 CHR$ (93) ; CHR (
1)5CHR$(94)

49 PRINTTAB(4)3CHR$ (1) CHR$ (93) sCHR$ (
1)5CHR$ (48) sCHR$ (1) s CHR$ (6B) sCHR$ (1) §
CHR$ (94)

5@ FRINTTAB(4);CHR$ (1) ; CHRS (94) 5 CHR$ (
1} 5CHR$ (68) sCHR$ (1) ;CHR$ (68) 5CHR$ (1 3
CHR$ (93)

6@ PRINTTAB(S) s CHR$ (1) ; CHR$ (94) s CHR$ (
1) 5CHRS$ (93)

Fig. 7.4. A simple program to produce the shape.

one of the F-keys to give you CHRS$(1), but it still looks clumsy on the
screen. Now take a look at Fig. 7.5. This may not look neater to you - it
needs more lines, for example, but it is better. There is only one PRINT
TAB(4);CHRS$(1);CHRS$(K%) instruction, instead of three lines of them.
Two loops are used, one for each line of characters, and another loop for
each column. All of the number variables are integer variables (using the %%

Special Effects and Geometrical Shapes 101

10 SCREEN1:FOR J%=1 TO 4
20 FOR N%=1 TO 4:READ K%

3@ PRINTTAB(4):CHRS$ (1) ;CHR$ (K%) 3
40 NEXT:PRINT:NEXT

S@ DATA32,93,94,32

60 DATA93, 68, 68,94

79 DATA94,48, 68,93

80 DATA32,94,93,32

Fig. 7.5. A neater method, using a loop.

sign) so that the program can run fast. The advantage of this method is that
you can see the data clearly, and it’s easy to alter the data while keeping the
program the same. Note that I've used TAB(4) in each line, and this has
meant putting in blanks - CHR$(32) —to pad out the first and last lines. The
use of CHRS$(1) has no effect when it is followed by CHR$(32).

Figure 7.6 illustrates an even better method, however. It starts by defining
a string called B$. This consists of four characters whose code is 29. If you

19 SCREEN1:B$=STRING$(4,29):GRs$=""

20 FOR J¥%=1 TO4:FOR N%Z=1 TO 4:READ K%
30 GR$=GR$+CHRS (1) +CHR$ (KZ) : NEXT

49 BR$=GR$+CHR$ (31)+B$:NEXT

5@ PRINTTAB(4) :GR%

69 DATA32,93,94,32

79 DATA93, 68,468,994

80 DATA94,48,68,93

99 DATAS2,94,93,32

Fig. 7.6. Placing all of the graphics characters and the cursor codes into a
single string.

look this up in the Manual, you’ll see that it is the cursor left character. The
effect of printing BS, then, will just be to put the cursor four places to the left.
In line 10 also, the string GR$ is equated to a blank. The next thing is to start
two loops, one for the lines, another for the columns. After a line of data has
been read and added to GR$ in line 30, CHRS$(31) is added. This will cause
the cursor to move down one line. Then B is added, which causes the cursor
to move four spaces left. The total effect, then, is to print four characters,
and then move the cursor to the correct position in the next line. Each line is
added to the string, and then the complete string is printed in line 40. When
you enter this,incidentally, you can save yourself some time if you already
have the program of Fig. 7.5 in the memory. Just type:

DELETE 10-40

and press ENTER. This will remove the old lines 10 to 40, leaving the
DATA lines 50 to 80, so that you don’t have to type them again. You can

102 Working with MSX BASIC

then renumber them as 60 to 90 to use in the new program. To do this, type
RENUM 60,50,10 and press RETURN.

The great advantage of the method that is illustrated in Fig. 7.6 is that the
shape can be printed anywhere on the screen without anything special
having to be added to the program. Any PRINT GR$ instruction will print
the shape, placed wherever the cursor starts out. You have to be careful, of
course, that you don’t place the cursor too far over to the right, or too near
the bottom of the screen. Armed with this ability to produce patterns, let’s
see now how we can make them appear in colour.

Vivid impressions

The best place to start on our exploration of colour is with the character
shape that we have been using. Figure 7.7 uses the same program to create

1@ SCREEN1:B$=STRINGS (4, 29) : GR$=""

20 FOR J%=1 TO4:FOR N%=1 TO 4:READ K%
39 GR$=GR$+CHR$ (1) +CHR$ (KZ) : NEXT

40 GR$=GR$+CHR$ (31) +B$:NEXT

&0 DATA32,93,94,32

7@ DATA93,68,68,94

89 DATA94,68,68,93

96 DATA32,94,93,32

100 PRINT:PRINT:FRINT

110 COLOR 11,12

120 FOR X%=0 TO 23 STEP 6

130 PRINTTAB(X%) ; STRINGS (5,30) s GR$: NE
XT

15¢ GOSUB 1000

176 FOR BGZ=¢ TO 1S5:PRINT"BG= ";BG%3;C
HR$ (30)

180 COLOR 4,BGY

190 GOSUB 1@@@:NEXT

200 GOSUB 1000

2160 FOR FG%Z=0 TO 15:PRINT"FG= "iFG%;C
HR$ (39)

220 COLOR FGZ%, 1:G0SUB 1000:NEXT

300 END

1600 TIME=0

1910 IF TIME<10©¢ THEN 1010

1020 RETURN

Fig. 7.7.Using the COLOR command to change foreground and background
colours.

the shape GRS, and then prints a set of four shapes across the screen. This is
done in line 130, and the reason for printing STRING$(5,30) is to get the

Special Effects and Geometrical Shapes 103

cursor up the screen in the right position for printing the next shape. Lines
170 to 190 then demonstrate how we can change the colour of the whole
screen, the background, by itself. Each colour is assigned to a number, and
the screen is forced to take the colour corresponding to the number when the
COLOR 4,BG% instruction is carried out. The numbers that are assigned to
the colours are shown in Fig. 7.8. The program runs through all of the
possible background colours, with the pattern displayed always in its dark
blue colour, colour 4. It’s at this stage that you really need a colour TV to
show the results, but you may be disappointed in some of the colours. Red in
particular always gives a very ‘smeary’ appearance on a TV screen, and to
see the colours as crisp and clear as they can be, you need to use a colour
monitor. As usual, something that is correctly designed for a job is always
better than something that is not. TVs are for soap operas; colour monitors
are for computer graphics.

Number Colour

0 Clear

1 Black

2 Green

3 Light green
4 Dark blue
5 Light blue
6 Dark red

7 Sky blue

8 Red

9 Bright red
10 Yellow

11 Light yellow
12 Dark green
13 Purple
14 Grey
15 White

Fig. 7.8. The numbers that are used to produce colours.

The lines 210 to 220 then run through the range of foreground colours,
with the background colour set to black. Once again, you will find that some
colours appear much more satisfactory than others. Retuning the TV can
help a little. Notice that colour 0 is always invisible, and when you make the
foreground and the background colours have the same value, all you can see
is a blank screen of that value. A very quick way of making a pattern
disappear, for example, is to switch its colour to the colour of the
background. Notice, by the way, that COLOR affects everything on the
screen, whether it was printed before or after the COLOR command. If you
find yourself with a screen colour that makes it difficult or impossible to see
a listing, then the computer has a ‘panic button’. Pressing key F6 (SHIFT
F1) restores normal colours, and you don’t have to press RETURN to
activate the command.

104 Working with MSX BASIC

Pixel patterns and high resolution

Up to now, we have produced text on the what is called the rext screen,
SCREEN 0, or on the low resolution graphics screen SCREEN [, by using
the PRINT instruction. We can produce a letter or graphics shape in two
ways. Taking A as an example, we could use PRINT “A”, or we could use
PRINT CHRS$(65). The first method is available for the characters that you
can see marked on the keys, and for the characters that can be obtained
along with the CODE and GRAPHICS keys, but the second method can be
used for a larger range which includes the ‘control’ characters that can shift
the cursor, or delete part of a line. The MSX computer, however, allows us
to place both letters and graphics characters on to another two varieties of
screens, called graphics screens.

The differences are important, and the sooner that you can get used to
them the better. The text screen (SCREEN 0) is the one that you see when
you switch the machine on. It is used, as the name suggests, mainly for text.
If all that you want to dois to display figures or words, then the text screen is
ideally suited. For the built-in graphics characters, SCREEN 1 is better,
because there is more space for each character and bits don’t get chopped
off. For most of the graphics commands, however, including much more
advanced graphics than we have looked at so far, there are two more of these
SCREEN numbers that we can use. If we want to make letters and graphics
characters appear on these screens, then we need a different method,
because PRINT cannot be used. Of the two graphics screens, the one that
can be used for the highest resolution of graphics is called screen 2. It can be
made to appear simply by including the command SCREEN 2 in your
program, but you cannot simply type SCREEN 2, then RETURN, and
expect to see it appear. The reason is that the computer a/ways switches back
to SCREEN 0, or SCREEN 1, whichever was previously in use, whenever a
program or command is finished. The only way that you can get enough
time to look at the graphics screen is by causing a delay before the program
ends. This can be done most easily by programming an endless loop, a line
like:

50 GOTO 50
With that in mind, take a look at the program of Fig. 7.9. It starts by

10 SCREENZ:COLOR®, 4,5:CLS
20 OPEN"GRP:" AS 1

30 FOR N%=0 TO 15

40 COLOR N%, 4,5

56 PRINT#1,CHR$ (N%+65) ;
60 NEXT

7@ GOTO79

Fig. 7.9. Using the high resolution screen, with the COLOR instruction.

Special Effects and Geometrical Shapes 105

calling up the high resolution graphics screen, using SCREEN 2. This is then
followed by a COLOR statement, and CLS. The COLOR statement uses
three numbers this time. Of these, the first is the foreground colour, the
second is the background colour, and the third is the border. The border is
the outside portion of the screen, where we don’t usually place any text or
drawings. It can be used in the text screens also, and if you use a small value
of WIDTH, you can make the border as big as you like. Getting back to the
program, the next line uses OPEN“GRP:” AS [. This is a way of allowing
text letters or numbers to be placed on the high resolution graphics screen.
OPEN is a command that we shall look at in detail in Chapter 11. It is
normally used for recording data on to cassettes, or reading data from
cassettes. In this case, it makes connections that allow text to be sent to the
graphics screen. By typing “GRP:”, we specify that we want to use the
graphics screen. The AS 1 section means that we will use the number 1 asan
identifier for this connection. We cannot use PRINT with the graphics
screen, but when we specify that we want to print to channel number 1, the
computer will look for an OPEN command which uses this number. In this
example, it will find that channel number | means the graphics screen. The
instruction to print on this screen, then, is PRINT #1,“TEXT”, with
whatever you want to print placed between the quotes.

The next part is a loop, which uses numbers 0 to 15. These are the colour
numbers, and they are used in line 40 to set the foreground colour on each
pass through the loop. In line 50, we print characters. Because we have used
PRINT#I1,CHRS$(N%+65), these will be the letters of the alphabet, because
ASCII code 65 is the code for A. What you will find unexpected is the
different colour of each letter! Run this, and just look at it.

Obviously, the high resolution graphics screen does not behave like the
text screen! For one thing, each letter can be printed in a different colour,
controlled by the foreground colour that is selected in the COLOR
command. Another curious point is that if you run this, stop it with CTRL
and STOP, and then run again, you will find that the letters appear at a
different place along the top line. This is because the high resolution
graphics screen (HRG screen, to avoid so much typing!) does not use the
ordinary text cursor. Youcanimagine that there is a graphics cursor, but it is
invisible. Unlike the text cursor, it is not placed at the top left of the screen by
the CLS or SCREEN commands. The result is that the second set of letters
appear to start where the first one left off, but the cursor then returns to the
left-hand side for the next set. To make the letters appear starting from the
left-hand side each time, put the command PRESET(0,0) between the
SCREEN and the COLOR commands in the first line. PRESET affects the
‘graphics cursor’, and we are just about to move on to that topic.

106 Working with MSX BASIC

PSET graphics

The MSX computer offers another way of producing graphics, however.
These are now high resolution in the sense that they use very small blocks,
or, to give them their proper name, pixels. The pixels of the SCREEN 2are,
in fact, the smallest units that we can place on to the graphics screen. We can
place up to 256 pixels across the screen, and up to 192 down the screen, a
total of 49152 pixels. The MSX computers allow you to specify the colour of
each of these pixels, but there are snags. The main snag is that you will not
get pixels which are immediately next to each other to appear in several
different colours. The pixels are grouped in sets of eight across the screen. In
any group of eight you are allowed only two colours, one background and
one foreground. If you attempt to use a third colour for either background
or foreground, the other pixels in the group will turn to this colour.

The key instructions now are PSET and PRESET. PSET has to be
followed by two numbers within brackets, and its effect is to make a pixel
appear in a selected place. By adding another number, outside the brackets,
we can also select a colour. If this colour code is omitted, the pixel will
appear in whatever foreground colour was selected by the COLOR
command earlier in the program. The position of the pixel is specified by
two numbers. The first of these, called the X co-ordinate, is the number of
units across from the left-hand side of the screen. The screen is divided (in
our imagination) into 256 units across and 192 down. We can use numbers 0
to 255 to control the position across the screen, the X-position. We can use
numbers of 0 to 191 to control the position down the screen, the Y-position.
X=0 means the left-hand side, and Y=0 means the top of the screen. These
are very tiny pixels, as you can see from the program in Fig. 7.10. This sets
SCREEN 2, then the colours, with a CLS to make the screen change colour.
In line 20 a loop starts which will print pixels in a line across the screen. By
choosing 95 as the Y-number, we will make this line appear about half-way
down the screen. Using N9 for the X-number allows us to PSET a number
of positions, 15 units apart. The distance apart is measured from the left-
hand side of each pixel. Lines 50 to 70 show the effect of using STEP 2. The
pixels appear almost joined, and the line of pixels takes noticeably longer to
draw.

The effect of PRESET is, as you might guess, to ‘reset’the pixel, changing
it to background colour so that it disappears. This is used mainly to make
pixels appear to move, and we’ll look at that point later on.

It’s time for another example. The main use of PSET and PRESET is in
drawing graphs, so that’s what we’ll illustrate. Figure 7.11 shows, to start
with, a PSET-PRESET planning grid, with the numbers 1 to 255 and 1 to
190 to indicate the positions of each pixel. We ought to use 0to 255and Oto
191, but this makes the graph awkward to draw. The important point is that
you can draw this grid for yourself. If you buy a pad of graph paper which is
scaled in cms and mms, then you can put the numbers on to each sheet for

Special Effects and Geometrical Shapes 107

190 SCREENZ2:COLOR11,1,13:CLS
20 FOR NZ=0 TO 255 STEP 15
30 PSET(N%Z,95),9

40 NEXT

50 FOR NZ=0 TO 255 STEP 2
69 PSET(NZ, 120),4

79 NEXT

80 GOTO8®

Fig. 7.10. Lighting up pixels with PSET. This shows how small the pixels are
on the high resolution screen.

250

[ejejolojololoJolololoNoNoNoNo]
OO0 0O0000QOrrAMNMITNDOMNDIIO - NN
TNOSLTDONOOrr~rrrrrrr - ONNANANN

12 3 456 7 8

1

Size of pixel,

2
SCREEN 3 \3

0 N o O

g Size of pixel,
<zd SCREEN 2

(b)

Fig. 7.11. (a) A PSET-PRESET planning grid. (b) Detailed section of the main
planning grid.

108 Working with MSX BAS/C

yourself. You can then shade in the squares that you need to PSET, and so
work out the numbers that you need to use. It’s even easier if you number the
lines of the graph, and represent each pixel position by the places where the
lines cross, rather than the squares themselves. Figure 7.12 shows a graph-
drawing program. This draws several graphs at the same time, using

16 SCREEN2:COLOR 4,11,11:CLS

20 FOR X%=0 TO 255

30 PSET (X%, 96+SIN{. 1#X%)*90) .1
49 PSET (XL, P6+SIN(.1#X%L) ~2%70) ,9
50 PSET (XZ,?6+SIN(. 1%X%L)"~3%90) ,4
69 NEXT

706 GOTQ 7o

Fig. 7.12. Agraph-drawing program. Graphs do not look very effective in low
resolution.

different colours. Because the pixels of the high resolution screen are so
small, however, it’s not easy to see the colours of the dots. You can also see
that where several dots are very close to each other, they all appear in the
same colour. This is the effect of the limitation that only one foreground and
one background colour can appear in a group of eight pixels. Line 20 starts
the loop which makes use of all the permitted values of X9%. The graphshapes
are achieved by using the SIN function, with one used as it is, one squared,
and one cubed. The multiplying factors are put in to make the shape fill a
reasonable amount of the screen in the Y direction. The sine or cube of the
sine of an angle cannot have a value less than —1 or more than +1, so we have
to ‘amplify’ it a bit by multiplying by 90. The square cannot have a value of
more than +1 or less than 0. The value of X% has to be multiplied by .1 to
make the range of angles suitable. The MSX computer does not use angles
in units of degrees. Instead, it uses a more natural unit, the radian. One
radian is about 57 degrees. The program has an endless loop in line 70 to
prevent the text screen from reappearing to spoil the picture, so you will
have to press the CTRL and STOP keys together to stop the program.

Sometimes, instead of specifying the exact position on the screen by
means of X and Y numbers, you just want to specify a shift, or
‘displacement’ of a number of pixels. You can do this by using STEP X in
place of X and STEP Y in place of Y. Any of the instructions that make use
of X and Y (usually in the form of X% and Y%) can use STEP X% and
STEP Y% instead.

Lines, boxes, circles and paints!

PSET and PRESET have their uses, when you may want to use a few pixels.
It would be hard work, however, to designa program which used PSET and

Special Effects and Geometrical Shapes 109

PRESET to draw lines. Fortunately, the BASIC of the MSX computer
allows you to draw lines, boxes, and circles without having to resort to any
special effort. This is because of the use of the LINE and CIRCLE
commands.

The LINE command, used at full power, can be quite a lot to take in, so
we’ll start simply. Try the program in Fig. 7.13. This draws a diagonal line,
using the small pixels that you should have become used to by now. The

16 SCREEN2
20 LINE(10,10)-(240,180),11
30 GOTO 30

Fig. 7.13. How the LINE command is used to produce a straight line.

LINE command is followed by two sets of numbers. The first pair, in
brackets, are the X and Y numbers for the starting point of the line. By using
X=10 and Y=10, we have chosen a position very near the left-hand side and
the top of the screen. After the second bracket, there must be a hyphen sign
(-). This is followed by the finishing point of the line, in another set of
brackets. This uses numbers X=240 and Y=180 to ensure that this point is
near the bottom of the screen and at the right-hand side. The result is a
diagonal line from top left to bottom right. How about drawing for yourself
a line from top right to bottom left?

Now take a deep breath, because there are a lot of extras that can be
tacked on to this command. Special offer number one is that once you have
drawn one line, you can make the LINE commands simpler. Suppose that
you want to draw another line which starts where the first one left off. You
don’t have to type the starting position all over again; simply omit the first
bracket. Figure 7.14 shows what is needed, with line 30 containing LINE -

10 SCREENZ2

20 COLOR1,1,1:CLS

30 LINE(1Q,10)-(240,180),11
40 LINE-(10,150),11

50 GOTOSO

Fig. 7.14. Shortening the LINE instruction for joined lines.

(10,150), 11 causing another line to join on to the end of the first one. You
must not omit the colour command in this LINE, because if you do, the
computer will use the colour which was specified in the COLOR statement -
and that’s black! This extension to LINE is particularly useful if you want to
draw squares - and for random patterns it’s essential. Just try Fig. 7.15,
which draws a starter line, and then uses a loop in which random numbers
are used to place the finishing point of the next lines. You'll see, incidentally,
just how fast the MSX computer draws these lines when you run this one.

110 Working with MSX BAS/C

190 SCREEN2:COLOR1,.1,1:CLS

20 LINE(20,20)-(150,159),9%

30 FOR NZzZ=1 TO 59

49 X7Z=RND(1)#255: YZ=RND (1) %171
5@ LINE-(XZL,Y%4),.9

60 NEXT

70 6071070

Fig. 7.15. A random lines program.

You could exhibit these at the Hayward Gallery and make your fortune,
incidentally, if they weren’t so well-drawn.

The next one is quite an astonishment. Try the program in Fig. 7.16, in
which the letter B has been added after the rest of the LINE command. The
effect is to draw a box - hence the letter B. When you want to draw a box in

10 SCREEN2:COLOR11,1,4:CLS
20 LINE(30,30)-(210,140),13,B
30 GOTOD3e

Fig. 7.16. Drawing a box with the LINE instruction.

this way, you must either use the colour number, or the correct number of
commas, then the B. You cannot place the B immediately following the last
bracket, because this will not be taken as a box command when it is in the
place where the computer expects to find a colour command. If you want
your box to be in the same colour as the other foreground (colour 11 in this
case), then you have to make the command look like: LINE (30,30)-(210,
140),,B. The colour number is omitted, but its comma is not.

The two points in the LINE command form the opposite corners of the
box, so you will always get neatly rectangular boxes when you use this
command. If any of the sides looks bent, it’s time to get your TV serviced!
Figure 7.17 shows something of the speed of this command. It chooses two
sets of X and Y numbers at random, and then draws a box in a random
colour. The number 3 has been added to the random number to make sure

10 SCREEN2:COLOR11,1,4:CLS

20 FOR NZ=1 TO 19

30 XZ=RND(1)#255: YZ=RND (1) %191

49 X17=RND(1)%255:Y1%Z=RND(1)%191

S50 LINE(XL,YA)—(X17Z,Y17%) ., 3+RND (1) #13,
B

60 NEXT

7@ GBOTO070

Fig. 7.17. A random boxes program.

Special Effects and Geometrical Shapes 111

that none of the boxes is drawn in transparent or black, and RND(1)*13 is
used to make sure that the random number for colour does not exceed 15.
The colour number ignores fractions, so that if RND(1)*13 gave 12.99 and
we added 3 to get 15.99, then the computer takes this as being 15.

No, we haven’t finished, because there is one more twist to LINE. Take a
look at the simple program in Fig. 7.18. This draws two boxes, using LINE in

16 SCREEN2:COLOR4,1,5:CLS

20 LINE(10,19)-(106,100),11,BF
30 LINE(150,20)-(250,1%9),7,BF
49 GOTO49

Fig. 7.18. Filling the box with colour, using the F addition.

the way that you have seen earlier, but with F added to the B. Youdon’t need
any commas or other dividers here, just the F at the end. Now the effect of
the F is to fill the rectangle with colour. The colour that is used is the colour
that you have specified in the LINE command, not the colour that is used for
the other foreground drawing. You’ll see from Fig. 7.18 that more than one
box can be drawn and filled in this way. Figure 7.19 shows how this can be

19 SCREENZ2:COLOR1,1,1:CLS:AZ=RND(-TIM
E):FORNYZ=1 TO1l0©

20 X7Z=RND(1)%255: YZL=RND (1) %191

3@ X1%Z=RND (1) #255: Y1%=RND (1) #1991

49 LINE(XZ,YZ)—(X1%,Y1%) ,F+RND(1) %13,

BF
50 GOSUB 100@:NEXT
60 6GOTOD 60

1000 TIME=0
1010 IF TIME<10©® THEN 1010
1020 RETURN

Fig. 7.19. A random box and fill program to show how one box will cover
another.

used in a random box and fill program. Line 10 contains the instruction:
A%=RND(—TIME)

This is the ‘seeding’ expression for random numbers which we have used
before to avoid generating the same sequence each time the program runs.
TIME is a number that is read from the internal ‘clock” of the MSX
computer, and by using this number as a negative number with RND, we
ensure that the sequence of numbers that we use in the program does not
repeat. If you omit this step, you will see the same boxes being drawn each
time you run the program. RND is not quite as random as it should be unless
you take this extra step.

112 Working with MSX BASIC

Moving in better circles

Drawing straight lines and boxes is useful, but being able to draw circles
greatly extends our artistic range. MSX computers, as you might expect by
now, have a very useful CIRCLE instruction. As usual, we’ll keep it simple
for starters. CIRCLE has to be followed by a pair of co-ordinate numbers,
in brackets, and then by another number outside the brackets. As usual,
commas separate the numbers. The co-ordinate numbers are of the centre of
the circle. The number that follows the brackets is the radius of the circle. In
case you've forgotten, that’s the distance from the centre to the outside. It’s
measured in screen units, these 256 by 192 units that we work in all the time.
If you want to show the whole of a circle on the screen, the largest number
that you can use for the radius is 95, assuming that the centre of the circle is
the centre of the screen. Following the radius number we can, if we like, have
another number, the colour number for the circle.

After that introduction, take a look at Fig. 7.20. Line 10 sets up the
familiar SCREEN 2 conditions, and the loop that starts in line 20 causes a
set of circles to be drawn. You may find that they don’t look very circular.

10 SCREEN2

29 FOR NZ=10 TO 80 STEFP 20
30 CIRCLE(127,96) ,N%,11

49 NEXT

So GOTOSO

Fig. 7.20. The CIRCLE instruction in action.

This is something that depends very much on how well adjusted your TV is.
If your TV has a HEIGHT control ourside the cabinet, try adjusting it until
the circles look more like circles. An alternative to this is to adjust the
WIDTH control, but few TV receivers nowadays have an adjustable width
control, one that you can adjust for yourself. A lot of modern TV receivers
have no controls that you can adjust apart from brightness, colour and
contrast, and the controls for width and height are inside the cabinet. You
must not on any account attempt to adjust internal controls unless you
know exactly what you are doing. TV receivers are full of high electrical
voltages, and only a service engineer knows exactly how to avoid trouble.

We're not finished with circles, though. What you know of MSX
computers so far might lead you to believe that there could just be more to
this CIRCLE command. There is. Try Fig. 7.21, which shows how you can
draw part-circles! The key to this is the provision of start and stop numbers.
The number 0 1s taken as the 3 o’clock position on the screen, and the circle is

16 SCREEN2
20 CIRCLE(127,96),80,11,0,3.14
30 GOTO3@

Fig. 7.21. Drawing partial circles.

http:CIRCLE(127,9b),80,11,0,3.14

Special Effects and Geometrical Shapes 113

drawn, going anti-clockwise from this position. The end-point is specified
by the second number. I have made this 3.14, which is the value of P1. Using
this number gives a semicircle and, for other parts of a circle, just use the
appropriate fraction. Figure 7.22 shows how you can design your part-
circles for yourself.

End of arc Drawn this
direction
1
/
[
R/
/ /Start of arc

Finish angle Startangle
(radians) (radians)

Fig. 7.22. How to design part-circles.

Zero angle

Don’t square it, squash it!

MSX computers also allow you to draw shapes which are ellipses -
squashed circles. The reshaping of a circle is done by adding yet another
number to the circle instruction. If this number is 1, then we simply get a
circle. If this extra number is less than 1, however, we get an ellipse which is
wider than it is high. If the extra number is greater than one, the ellipse is
higher than it is wide. We can even make ellipses which are stretched out so
much that they look like straight lines! We can also correct the shape of
circles that look elliptical because of the TV receiver. This gives the MSX
computer unparalleled power to create all sorts of curved shapes. One of the
features of the CIRCLE command is that it allows the use of numbers which
take the cursor beyond the screen area, so that what you see on the screen is
only part of a drawing.

Take a look at Fig. 7.23. Lines 10 to 60 are used to illustrate the ellipses
that we can create. The range of the number that we can use, following the
radius number (don’t forget the comma)is 0 to 255, but the range that [have
illustrated here is the most useful part. The only problem with this command
is that it comes after the start and finish commands which we use to draw a
part-circle. If you want a complete ellipse, you won’t want to use these
numbers. We can get round this, as the program indicates, by omitting the
start and finish numbers, but putting in their commas. It makes the

http:CIRCLE(127,9b),80,11,0,3.14

114 Working with MSX BASIC

10 SCREENZ2
20 FOR E=1 TO .1 STEP -.1

30 CIRCLE(128,96),100,11,,,E:NEXT
40 GOSUB 1009:CLS

Se FOR E=1 TO 3 STEP .2

6@ CIRCLE(128,96),80,11,,,E:NEXT

70 GOTO79

1000 TIME=0

1010 IF TIME<10OTHEN1@10ELSE RETURN

Fig. 7.23. Producing ellipses. This can also be used to correct the shape of a
circle, if your TV does not produce perfect circles.
command look rather odd, but it works! Notice how the circles are drawn
starting from the two horizontal ends.

Meantime, there’s another command to look at. Figure 7.24 demonstrates
another amazing feature of the MSX computers, the PAINT instruction.

10 SCREEN2
20 CIRCLE(127,96),88,11
30 CIRCLE(127,96),30,11
40 PAINT(127,59),11

5@ GOT0Se

Fig. 7.24. The amazing PAINT instruction.

This will fill a space with colour, providing that you have enclosed the space
with lines. Lines 20 and 30 draw two circles, one within the other. The
PAINT instruction in line 40 then fills with colour the space between the
circles. PAINT needs the usual pair of co-ordinate numbers following it, in
brackets. You have to choose these numbers so that they will act as a starting
point for the painting operation. They must, therefore, be somewhere inside
the area that you want to paint. Odd things may happen if you select a point
on the edge of the area that you want to paint. You will certainly not get
what you want if you pick a point which is outside the area you want to
paint! Following the starting point, we’ve used one other number. This is the
number of the colour that we want to use for painting. We don’t have much
choice about this colour, it has to be the same as the colour we have used as a
boundary. Both of the circles are drawn in yellow, so we have to paint in
yellow. If you ignore this, you may find that the colour splashes all over the
screen.

In this chapter, we have looked at some of the MSX commands that draw
geometrical shapes on the high resolution screen. The examples have all
been simple ones which were designed to let you see how the commands
worked, and encourage you to try variations. In the following chapter, we're
going to look at more complicated examples, and also at the ‘free-range’
drawing methods that MSX computers allow you to use. We’ll also look at
the multi-colour screen which is created by SCREEN 3. Even Chapter 8
does not exhaust the capabilities of these amazing machines, however, and
Chapter 9 is devoted to animated shapes, or sprites. Hang on to your hats!

Chapter Eight
DRAW Graphics

Before we get on to the main themes for this chapter, there’s another type of
graphics screen to look at, SCREEN 3. This is a lower resolution screen,
which uses much larger pixels. The pixel size allows only 64 pixels across the
screen by 48 down. If you try some of the line and circle commands of the
previous chapter using SCREEN 3 in place of SCREEN 2, you will see how
much coarser the lines look. The reason for having this type of display is that
it permits the whole range of colours to be used. Figure 8.1 shows this in
action, using SCREEN 3 to draw a thick line which has a different colour in
each large pixel. The program is straightforward except for the use of MOD

10 SCREEN3

20 FOR X7%=1 TO 255 STEP 4
30 PSET(X%,96), XZMOD15

49 NEXT

S50 6GOTOSO

Fig. 8.1. Using SCREEN 3 for more colour choice, but thicker lines.

in line 30. This command is used in the form XMODY, and it means the
remainder when X is divided by Y, using integer division. For example,
5MOD2 would give 1, because 5 divided by 2 is 2 with a remainder of 1.
Similarly 14MODS is 4 because S into 14 is 2 and 4 remaining. In line 30,
then, using X%MOD 15 will give remainders which are equal to the value of
X% until X% is 15, when the value becomes 0. The value of X% MOD 15 will
then increment up to 14, and then switch back to zero when X% reaches 30.
The point of this is that the colour number will not exceed 14 no matter what
value X% takes.

The reason for the differences between SCREEN 2 and SCREEN 3 is
memory. The computer can deal, atany given time, with 64K of memory. Of
this, 32K is taken by the BASIC interpreter, the part which allows the
computer to be programmed in BASIC. Of the 32K that remains, only
about 28K is actually available to you for writing and running a program,
because a chunk of memory is reserved for the machine to store quantities
that will be needed when a program runs. These are items like the cursor
position, cassette data speed, function key commands and so on. On some

116 Working with MSX BASIC

machines, yet more memory is taken out of this for the screen display!

Fortunately, the MSX machines use a separate section of memory for the
screen display. This screen memory is of a fixed size, however. Using high
resolution with two colours takes as much memory as using low resolution
with sixteen colours, and you can’t have high resolution with sixteen colours
without using very much more memory. Since the drawing commands of the
MSX machines look so much better on the high resolution screen, we’ll keep
to that one for most of this book. The low resolution screens will come into
their own again in Chapter 9, however, when we look at sprite graphics. The
sprite graphics capability allows you to use a low resolution graphics screen,
with its full colour range, as a background. In front of this background,
shapes which are called sprites can be superimposed and moved. These
shapes are in high resolution, but because they are comparatively small, they
don’t eat up too much of the memory. The combination of low resolution
background along with sprites provides a very effective way of
programming animated games and displays.

POINT the way!

There’s another command which fits along with PSET and PRESET, and
which gives me a chance to show you PRESET in action. The command is
POINT, and it’s a way of reporting what’s going on. POINT gives you the
colour of a pixel. It has to be followed by the usual X and Y location
numbers, and you can find what it does by using something like PRINT
POINT(X,Y) or A=POINT(X,Y). What is printed or assigned to A by these
commands will be a number between 0 and 15. It is the colour number for
the pixel, so that you can tell whether the pixel is at background or at
foreground colour.

Now that description makes it sound quite simple, but it’s not quite so
simple as it seems, as the program in Fig. 8.2 will illustrate. Remember in
this program, and in the next few, that you will need to press F6 to get back

10 SCREEN2:COLORQ,1,1:CLS

20 FOR Y7Z=0 TO 191:PSET(10,Y%),11:NEX
T

30 FOR Y%Z=9 TO 191:PSET(254,Y%),11:NE
XT

409 KZ=1:X%=11:Y%=1

50 PSET (X%4,Y%),S

60 IF POINT(XZ+KZ,YZL)<>1THEN KZ=-KZ:Y
%=Y7+1

79 PRESET (X%Z,Y%)

80 Xi=XZ%L+K%L

90 IF YZ=190THEN END

1900 GOTOSO

Fig. 8.2. A bouncing ball routine to illustrate the use of POINT.

DRAW Graphics 117

to normal screen colours afterwards. The program sets a black background,
and draws a vertical line down each side. A dot is placed at the top left-hand
side, and it moves across the screen. This is done by using PSET(X%,Y%),5.
The future position of the dot is tested by using POINT, and if this point is
background, the point is PRESET, the value of X% is increased, and the
new point is PSET. When the wall is found from POINT, then the variable
K% is made negative, so that X9%+K9% will have the effect of subtracting 1
instead of adding 1. This causes the point to move left rather than right. At
the same time, Y%—=Y %t 1 has the effect of moving the point one step down.

What is not quite so expected is the colour finding action of POINT. If
you use:

IF POINT (X%+K%,Y%)=11

then the dot simply zips through the ‘wall’ and disappears! This is because
the colour of the ‘wall’ is affected by the colour of the dot when the dot gets
too near. This is also the reason that holes appear in the wall after the dot has
bounced. We can get round this problem very simply, as Fig. 8.3 shows. If
you make sure that the dot is the same colour as the wall, then the system
works nicely. You can also use the IF POINT (X%, Y%)=11test if you like, it

19 SCREENZ2:COLORO,1,1:CLS

20 FOR Y7=0 TO 191:PSET(10,Y%4),11:NEX
T

30 FOR YZ=0 TO 191:PSET(254,Y%),11:NE
XT

409 KZ=1:X7=11:Y%=1

S50 PSET(X%,YZ) .11

60 IF POINT (X%Z+KZ,YA)=11THEN KZ=-K%Z:Y
“=Y7+1

70 PRESET (X%, Y%4)

80 XZ=XZ+K%

90 IF Y%=190THEN END

190 GOTOSO

Fig. 8.3. How a change of colour allows you to use POINT more effectively.

works now. I have added the command PRESET(X%,Y%) to line 70 to
prevent a dot being left at the wall.

In these examples, of course, there was no need to use POINT, because we
knew exactly where the walls were. In maze games, however, the walls are
drawn at random, and you can’t put their X and Y numbers so easily into a
POINT command. It’s then that POINT really comes into its own. Another
reason for using POINT is that if you have two objects moving on the
screen, it’s easier to detect any kind of collision (object to object or object to
background) with POINT. Just one POINT test will detect any type of
collision, but if you were testing values of X% and Y%, you might have to
use a lot of tests.

The moving point in these two examples is very small, just the size of one

118 Working with MSX BASIC

pixel on the screen. Try the effect, then, of using SCREEN 3in both of these
programs. You will have to make some adjustments to the numbers, because
SCREEN 3 uses only 64 pixels across. As well as SCREEN 3in line 10, then
you will need to use X%=15 and K%=4 in line 40, and Y%=Y%t4in line
60. When you run this, you’ll see the effect of the larger pixels, and also that
the speed of the action is much greater. Take your pick!

MSX computer drawing

The ability for drawing lines and circles is just the start of the MSX
computer’s amazing graphics capabilities. We're going to look at another
way of drawing now, one which uses the instruction word DRAW. DRAW
has to be followed by a string variable name, like DRAW A$ or DRAW
GRS, and it's what you put into this string variable that decides what 1s
drawn. Figure 8.4 shows a list of the letters that can be used. What you have

Letter Use

Angle

Blank (no trace left)

Colour

Down

Diagonally up and right

Diagonally down and right
Diagonally down and left

Diagonally up and left

Left

Move (needs two position numbers)
Move, then return to original position
Right

Scale (numbers 1 to 64)

Up

Execute substring. A semicolon must follow the name of the
substring

XCownozzrmToTmmgow»

Fig. 8.4. The command letters for graphics strings.

to do is to chart your drawing in terms of a starting point, then as up, down,
left, right, or diagonal movements. The amount of each movement can be
small, just one pixel, so that it’s possible to make very detailed patterns in
this way when you use SCREEN 2. You can also move to a new starting
point without drawing a line. The very considerable advantage of using
DRAW is that a complete pattern can be put on to the screen by just one
simple instruction like DRAW GS.

DRAW Graphics 119

Now to the nitty-gritty. Figure 8.5 illustrates just how we go about
creating a drawing in this way. Line 10 is familiar stuff, but line 20is new. In
this line, a string is defined. It’s a funny-looking sort of string which consists
of command letters and numbers. The command letters are the letters of the
draw commands, and the numbers are the units of screen size. As you know

19 SCREEN2:COLOR11,1,1:CLS

20 GR$="BM20,180;Ci1Ul1060R20D120R20U10
PR20D100"

30 DRAW GR%

49 GOTO40

Fig. 8.56. A drawing program which uses DRAW.

by now, these are 0 to 255 in the X direction, and 0 to 191 inthe Y direction.
The string starts with BM. B means blank and it’s used to ensure that no line
is drawn, and M means move. The letter M has to be followed by two
numbers, which are the X and Y numbers for the place where you want the
drawing to start. [have chosen a point near the bottom left-hand side of the
screen. Following the BM step, you need to indicate what colour you want
for your drawing. This is done by using the letter C, followed by the colour
number. In this case, I'm using colour 11. The next parts are movements —
100 up, 20 right, 100 down, 20 right and so on. The string ends with a quote
mark as usual.

Now all that we have to do to draw this in line 30 is the command DRAW
GRS. It’s delightfully simple, but a very fast and powerful way of creating a
drawing. It's particularly easy to make repetitive drawings in this way
because we can include a sort of subroutine. This is called a substring, and
Fig. 8.6 shows how it is used. What it amounts to is that you can define a

190 SCREENZ2:COLOR11,1,1:CLS

20 SB$="U100R20D100R20"

30 XS$="":FOR NZ=1 TO S5:XS$=XS$+SB$:N
EXT

49 GR$="BM20, 1803;C11XXS%:"

59 DRAW GR$

60 GOTOGe

Fig. 8.6. Using a substring for a repeated pattern.

string which is part of a pattern, then ‘execute’ this substring inside the main
string. In this case, I have illustrated only the substring being used. The
calling command is X (eXecute), and it must be followed by the string name
and then a semicolon. If you miss out the semicolon, you will get an error
message, but the error will be reported in line 50, where the DRAW GR$
instruction is. This can be confusing, because the error is not actually in this
line, it’s just that it’s been found when this line was run. In this example, I
have used SB$ to contain a simple up, across, down, across, set of
instructions. The loop in line 30 then packs five of these patterns into a

120 Working with MSX BASIC

longer string, and line 40 calls for this string to be called as a substring of
GRS. The result is five sets of the pattern on the screen.

Now try something different, using the program of Fig. 8.7. In line 30, in
place of FOR N=1 TO 5, this uses FOR N% = | TO 8. This packs eight
patterns into the string, and it’s effect will be to move the drawing off the
screen. Try it without line S, though, and that’s not what you find when you

S CLEAR 1000

10 SCREEN2:COLOR11,1,1:CLS

20 SB$="U100R20D100R20"

30 XS$="":FOR NZ=1 TO 8:XS$=XS$+SBs$:N
EXT

490 BR$="BM20,180:C11XXS%:"

S© DRAW GRs$

60 60T060

Fig. 8.7. The need for CLEAR, and how you can draw off-screen.

try to run it! When we use DRAW, we will be using quite longstrings, so we
have to clear more memory space for strings than the amount which the
MSX computer allows. By having CLEAR 1000 in line 5, we allocate a lot
more room. Now you can run the program, and you will find that the boxes
disappear off the edge of the screen. The DRAW command does not bother
about the edges of the screen, and you will not get an error message if your
drawing goes off the screen. This can be very useful, because it’s easy to
forget just how far you have moved from your original starting place when
you have programmed a lot of ups, downs, lefts and rights.

Now for a much more elaborate drawing, in Fig. 8.8, that makes use of all
of the commands so far. Lines 10 and 20, as usual, set up the screen
conditions, and lines 30 to 50 then define the strings. M$ is the main string,

10 CLEAR 1000

20 SCREEN2:COLOReQ,1,1:CLS

30 M$="BM40,20;C11D10R10D&OL 10USD20US
R200U601.10U10;5 XC$35 D10L6@3 XDs$; LSoU20Ls
Oll

40 Cs="U2L U2 U21 U2 2U21 SU2R3IOD2L5D2L 2
- D2LD2LD2L D2

S50 D$="USLUSLUZLU3L2U2L 4U3L 4UL 2DL 4D3L
4D21L.2D3L D2L DSL DS"

69 DRAW M$

70 FOR X7Z=100 TO 200 STEP S50

80 CIRCLE(XZ,100),29, 11:NEXT

90 LINE(100,110)-(200,110),11

1e@ G0TO100

200 SCREEN2:DRAWCS

210 60TO210

Fig. 8.8. A more elaborate drawing which needs to be planned. The LINE and
CIRCLE commands can be used along with DRAW.

DRAW Graphics 121

and it starts with BM40,20. Two substrings are used. In this example, C$ is
the chimney, and D§$ is the dome. Using XC$ and XDS$ in the main string
therefore draws these details in the correct places. If you aren’t pleased with
these places, it’s easy to move position. All you have to do is to alter the place
where the substring is called. Incidentally, I typed this with the CAPS
LOCK pressed, because in the graphics strings, a capital L is less likely to be
confused with a | than a lower-case I.

I have used semicolons after BM40,20, and before and after each
substring. The semicolon must be used after the string ($) sign, but it doesn’t
have to be used in the other positions. I have put in the extra semicolons just
to make it easier to read the items in the string by marking out the positions
of the substrings. The main body of the drawing is then carried out at an
astonishing speed by DRAW MS$ in line 60.

The next point in this example is that you can mix the familiar LINE and
CIRCLE commands along with the DRAW! The circle commands are used
for drawing the driving wheels, because there is nothing ina DRAW string
that can do this. The LINE could have been replaced by a DRAW, but it’s
easier to use LINE in this case, because it needs only one instruction. When
you have started with the colour 0 chosen as the foreground colour (0 means
invisible!), then you won’t see anything drawn unless you specify a colour.
This has to be done in the main DRAW string, in the CIRCLE command,
and in the LINE command also.

Now for some more DRAW magic. As well as the up, down, left and right

u

D

Fig. 8.9. The letters which are used to draw diagonally.

122 Working with MSX BASIC

commands, there are letters which indicate diagonal directions. These are
illustrated in Fig. 8.9, and a program which uses them is shown in Fig. 8. 10.
This uses a string which draws a diamond pattern, and then chooses ten
randomly selected places on the screen. Now you have to be careful here as
to how you get to these places. Using LOCATE works only for the

10 SCREEN2:COLOR11,1,1:CLS

20 A%=RND(-TIME)

30 DM$="G1@0H1OE1eFio"

49 FOR N%=1 TO 1@

50 PYL=INT (RND (1) *220+20) : @Z=INT (RND (1
) #150+20)

6@ PSET(PZ,Q%):DRAW DM$

70 NEXT

80 GOTOSBe

Fig. 8.10. Using the diagonal commands in arandom diamond program. PSET
is used to locate the cursor, because LOCATE does not work with the graphics
screens.

instructions of the text screen, like PRINT, but does not move the DRAW
position. The command that you have to use is PSET (or PRESET). By
picking P% and Q9% values at random, followed by PSET (P%,Q%), the
invisible graphics cursor is in the correct place to draw the diamond pattern.
You might think that you could use “BM P%,Q%" for this, but you can’t.
You are not allowed to use variable names inside a graphics string, except in
ways that we’ll come to later. The BM command is not one of the commands
that can make use of variables.

Artistic creations

The DRAW command is a very useful way of making straight line drawings
with less effort than is needed by LINE. You can use the LINE commands as
well, and all the varieties of CIRCLE, along with box fill and PAINT to
create any shape you want. What we have to look at now is how to plan these
shapes. Trying to make a program that creates shapes on the screen is
difficult enough; without planning it’s almost impossible! The planning
must start, as always, with a piece of graph paper.

You will have to start with a sheet of A4 graph paper. Pads of graph paper
made by firms like Chartwell and Guildhall are ideal. They should be A4 size
and scaled in centimetres and millimetres. In addition, you will need a pad of
tracing paper from the same suppliers. These items are not cheap, but they
will last you for a long time. The principle is to mark out on the graph paper
the co-ordinate numbers for your graphics screen, place the tracing paper
over the graph paper, and then to make drawings on to the tracing paper.
Because the tracing paper is transparent, you can see through it to the grid of
co-ordinates underneath, and you can read off the values. Figure 7.11

DRAW Graphics 123

showed the way that you should mark out your graph paper. Strictly
speaking, you should use scales of 0 to 255 and 0 to 191, but it’s unusual to
have to draw right to the edges of the screen, and using 1 to 250 and 10to 190
is much more convenient — it fits the paper better!
How do we go about designing a DRAW pattern on this? Figure 8.11
indicates how. You count each square on the graph paper as having sides of
10
20
30
40
50
60
70 A5 hD R50
80
90 < <
100 Ve 0-0
10— @ k2 Ng
120 Start il
130—+H5 L50
140
150
160
170
180
190

0\

Q

>
aA
|

N

r

H

(o)

/
3
N
N

[

U25

N
O“"o
i

I
D
o)
w
2
X7
1
7
Vs

T

|

k%)

>

i

w

o

0

30

o
\O’
XA A

A

&

%

9\2\
)
p,

10 30 50 70 90 110 130 150 170 190 210 230 250
Fig. 8.17. How to use the chart to plan a pattern.

ten pixels, and diagonals also of ten pixels. That point about the diagonals is
very important, because it saves a lot of awkward calculations or
measurements. You draw your patterns on the paper, remembering that you
can use up, down, left and right. When it comes to diagonals, remember that
these must be 45 degree diagonals. This makes some shapes look distorted,
like the M in this example. If the distortion is unacceptable, then you will
have to use LINE instructions for these parts. When you make the drawing,
you will make life alot easier if you keep to simple dimensions, like multiples
of five and ten. It is a lot more difficult to follow a pattern that goes
U13L27D17R29 and so on! Working with the tracing paper over the graph
paper makes it much easier to see what you are doing, and to check your
measurements.

The next step, once the drawing is to your satisfaction, is to obtain any
distances and co-ordinates that you need. If you are using LINE and
CIRCLE, you will need to read the X and Y co-ordinates of points such as
the start and end of a line or the centre of a circle. These are easily read from
the graph paper underneath the tracing paper. DRAW graphics are just as
easy, and the illustration in Fig. 8.11 shows how. You simply count sides of
squares or complete diagonals as ten pixels each, and then write the

124 Working with MSX BASIC

numbers against the lines. It helps if you write the letters like U,D,G,H and
so on as well. You can then program directly from this. Programming is
made easier if you program a section at a time, and join the strings up for
final drawing. Figure 8.12 shows the MSX shape done in this way. | have
used M 13 to hold the upper part of the M, then S1$for the upper part of the
S. The string X$ then holds both parts of the X shape, and strings S2$ and
M2$ hold the lower parts of these letter shapes. The whole lot is then put
into a string GRS in line 70, and drawn in line 80. Line 90 then fills the shape
with colour, using PAINT. Watch this in action, incidentally, because it
gives you a good idea of how complicated the PAINT action is. Note how
the paint follows straight line shapes, leaving the corners of the M until last.
How about working on your own initials now?

19 CLEAR190090: SCREEN2: COLOR11,1,1:CLS
20 Mi$="BM20,1205C11;E45F10E10F45"

30 S1%="R40U20L30UZSRS0"

40 X$="F20E20FSG20F 206TH206G20HSE20H20

59 S2%="L40D15R30D3IoLS5e"
60 M2$="H40G10H10G4OHS"

70 GR$=M1$+S51$+X$+526+M2%
80 DRAW GR$

9@ PAINT(32,115),11

100 GOTO100

Fig. 8.12. The program which has been written from the plan in Fig. 8.12.

Shrink, grow, and turn

The possibilities for creating drawings with the DRAW instruction are
made even greater by the options of altering both the size and the angle of
patterns. These actions are carried out by using the letters S (for scale) and A
(for angle) within the DRAW string. We can also add these instruction
letters to a string, and we can put numbers in along with them by using
STR§(number). MSX BASIC allows another way of putting variables into
these DRAW strings. If you have a variable, such as J9, which carries a
value, then you can put something like S=J9%; into the string. The semicolon
is essential and you will get an error message if you omit it. The effects which
can be produced with this scale command are spectacular - most other
machines could do these actions only with a lot of very complicated
programming.

Try the program of Fig. 8.13 now. This, up to line 40, is a simple piece of
programming that draws a box. After the delay in line 50, though, things
start to happen. The fancy business starts in line 60, with the loop that uses
variable J%. The range of the counter J% is 1 to 60, and you can use up to
255. This figure of 255 is the whole of the permitted range for the scale

DRAW Graphics 125

10 CLEARGOO0: SCREENZ2

20 COLOR11,1,1:CLS

30 GH="USORS0DSoLSe"

40 DRAW"BM128,%6"+G%

50 FOR N=1 TO109@:NEXT

60 FOR J%=1 TO 60:CLS

70 DRAW"BM128,765"+5TR$ (J%) +6%
80 FOR Z=1 TO 200:NEXT:NEXT

99 GOTO%0

Fig. 8.13. Using S for scaling a drawing.

instruction, which uses the letter S. The scale which will be used for drawing
is one eighth of the number which follows S. For example, if you use S2,
then the drawing is 2/8, which is 1/4 size. Using S16 would make the
drawing 16/8, which is double size. This letter S has been put into the
DRAW instruction in line 70, so that the pattern is drawn with a different
scale number each time. Watch these scale effects carefully. They are very
easy to use, but the effects may not be exactly what you want. One point is
that the start which is given by the BM part of the command is one edge of
the square. The square will always start at this edge and grow from that
point. The other problem occurs if the pattern ‘grows’ too much. The reason
is that the pattern will not grow beyond the edges of the screen. If your
pattern hits a screen edge, it will, from then on, grow in the other directions
only. This can cause the pattern to shift from where you thought it would be
and also to change shape. Some careful planning, with graph paper and
tracing paper, is needed when you start to work with these Incredible Hulk
graphics! You will also find that if you stop the program, using CTRL and
STOP, then when it starts again, it will draw one shape of the size it was
drawing when it was stopped. It will then restart normally. This is because
the S size is stored in the memory, and unless you clear it with NEW (which
will clear out the program also) it will stay put. When you use several
drawings in a program, you will need to prevent a scale factor from one from
affecting the others. This can be done by including S8 in each drawing that
you want to be normal size.

Take a quick look now at a small change which makes a big difference.
The program is in Fig. 8.14, and lines 10 and 20 should be familiar territory
for you now. Line 30 is a short and simple string for a shape. Notice that this

10 CLEARS00: SCREENZ

20 COLOR 11,1,1:CLS

30 G%="BUSL10FS6G5R20HSESL 10"

40 DRAW"BM140,80"+6G%:FORN=1 TO 1000:N
EXT

50 FOR J%=1 TO 60:CLS

60 DRAW'"BM140,80S"+STR$(J%Z) +G%

79 FOR Z=1 TO 200:NEXT:NEXT

80 GOTO 80

Fig. 8.14. Starting a drawing at the centre, so that it expands round the centre.

126 Working with MSX BASIC

shape has no defined starting point, and it starts with a blank move
upwards. The reason, as you'll see later is so that the starting point is the
centre of the shape. When we expand the shape, the expansion is always
around the starting point. If this now is the centre, the centre of the shape
stays put. In the previous example, because the starting point was at a
corner, the shape expanded from that corner outwards. Line 40 then draws
this shape, but with a starting point added at 140,80. Notice how this is done,
using the + sign to join the strings.

Angle antics

The use of the command letter S to make the drawing take different scales 1s
a splendid feature of MSX BASIC, but there is another command letter that
we can use. This timeit’s A, and its effect is to alter the angle at which a shape
is seen. With A0, the shape is shown just as it has been drawn. With A1, the
shape is turned through 90 degrees anticlockwise. Using A2 makes the shape
turn through 180 degrees, and A3 makes it turn through 270 degrees. The
number which is used with A must not exceed 3, otherwise the program will
stop with the ‘Illegal function call’ error message. Figure 8.15 shows an
example of this command in action. The shape is drawn, using S8A0 to

19 CLEARS90: SCREENZ2

20 COLOR 11,1,1:CLS

38 G$="BUSL10D1O0RZOHSESL 10"

49 DRAW"BM149,8058A0"+G%:FORN=1 TO 10
P9:NEXT:CLS

S50 FOR J%i=0 T0O 3

69 DRAW"BM149,80A"+STR$(JZ) +5%

70 FOR Z=1 TO 19000:NEXT:CLS:NEXT

g GOTOBO

Fig. 8.15. Using the angle-turning command letter A.

make sure that its size and angle will be unaffected by any previous program
that was running. It is then rotated by using values of J% ranging from 0 to
3, with the value put into the graphics stringin the same way as before, using
STRS. Some MSX machines used with some TV receivers will make the
shape appear to alter as it turns. This is the same problem as is manifested by
the shape of circles. If your TV can be adjusted so as to show perfectly round
circles, it will also show no change in a shape which is being rotated.

Multiple shapes

Now take a look at Fig. 8.16. This illustrates how a number of shapes can be
joined up easily. The key to this is the use of the + or — signs along with M or

DRAW Graphics 127

10 CLEAR 5@0:SCREEN2

26 COLOR 11,1,1:CLS:DRAW"BM10,80"
30 G$="BUSL10FSG5R2QHSESL 10"

40 FOR X%=1 TO 8

50 DRAW"BM"+"+"+STR$(20)+",5"+6%
&9 FORN=1 TO1@00:NEXT:NEXT

7@ GOTO7¢

Fig. 8.16. Shifting a pattern position so as to join patterns with the + sign.

BM. Adding the sign + to a BM or M instruction will cause a movement of
as many spaces as you specify. This is an important difference. BM 10,10,
for example, means move to position X+10, Y+10. If we use BM + 10,+10,
we mean a move of ten places right and ten places down from where the last
piece of drawing finished. Note that if you have been using angle and scale
commands, you can sometimes find that + gives movement left or up, and =
gives movement right or down. It's advisable to reset all scale and angle
commands before you use the +and —markers. The tricky bit here is adding
the + or — signs to the string, and line 50 shows two ways of doing this. The
+ sign which is enclosed by quotes is the one that is put into the string; the
others are there only to provide the joining action. The method that uses
STR$(20) is more useful when the quantity that is being added is a variable
value. The method that uses “,5” is more suitable when the value is a fixed
and known number.

Chapter Nine

Identifiable Flying
Objects

Animation of a shape on the screen can be a tedious process. We have seen
something of it in the ‘bouncing ball’ program of Fig. 8.2 to know what's
involved. You have to print your object at a place on the screen, wait a short
time, then wipe out the object. This can be done by using PRESET, or by
changing its colour to transparent. You then have to shift the (invisible)
graphics cursor, and repeat the process. This has to be done in a loop, with X
and Y position values chosen so that the object follows the path that you
want. It’s bad enough to have to animate a point, but animating a shape with
the ordinary commands of your average computer is like hacking salt from
the Siberian mines with Iess pleasure in the work. Nevertheless, this is about
all that the average computer can do with BASIC language commands.
Fortunately, we’re not dealing with a computer that is ‘average’ in any
respect. The MSX computer has the ability to create and control moving
objects, called sprites. You can determine the shape, and to some extent the
size, of these sprites for yourself. They are controlled by BASIC instruction
words, which makes the MSX computer one of a select bunch of computers
- for many computers use number codes to control sprites, and this makes it
very hard to remember what you have to do. MSX computer sprites can be
created and controlled, once you have some practice in the art, without the
need to keep the manual in one hand all the time! It’s because sprite graphics
are available that I have not described animation in any detail until now.

Sprite creation

Working with sprites means that you have to determine the shape and size of
the sprites, and then arrange for instructions that will move them. The point
of sprite graphics is that you don’t have to go through the process of printing
and wiping; this is done automatically. Keeping to the policy of one thing at
a time, we'll start this chapter by looking at how a sprite is created. As we g0
on, you’ll become more familiar with the ideas of sprites, and you will be
able to take on the job for yourself, using your own ideas.

To create a sprite shape, we have to start on paper, and our starting place

Identifiable Flying Objects 129

is the 8 X 8 grid that is shown in Fig. 9.1. You can see that each column of
this grid is numbered, starting with | on the right-hand side, and ending with
128 on the left-hand side. These numbers are very important, because they
decide what your sprite shape will look like. You create a shape by pencilling
in squares on the grid. You must shade complete squares, not part-squares.
Once you have done this, you can work out a set of 8 code numbers, one for
each row of the grid. This is done by looking along a line, and adding up the
column numbers for each square that is shaded. If only the square on the
right-hand side is shaded, then the number is 1. If only the square on the left-
hand side is shaded, then the number is 128. If both of these squares are
shaded, the number is 129 - we just add 128 and 1.

128

g%f@vm-—

Fig. 9.1. The 8 X 8 sprite planning grid.

What we need now is an illustration, and Fig. 9.2shows the first step, the 8
X 8 grid drawing, a shape drawn over it, and the set of numbers. The best
way of doing this is to place a piece of tracing paper over the grid, and then
shade on to the tracing paper. That way, you only have to draw your grid
once. It’s also a lot easier to change your mind if you use tracing paper. Once
the shape is drawn, we can work out the eight code numbers and these have
been shown at the side of the drawing, which is of the dreaded Flying Wotsit
of Argalia. The next step is to make these numbers into the form of a string.
This means using a loop which will read each number from a DATA line,
and add the CHRS of each number to a string variable. I’ve used the name
SP$ for this variable.

[]
o] 128464 +2+1=195
324+4=36
16+8=24
32+16+8+4=60
== 64 +2=66

] 128 +1=129
[}

Fig. 9.2. How to plan a sprite, and find its eight code numbers.

130 Working with MSX BASIC

This, however, doesn’t make the shape appear on the screen. This is dealt
with by another instruction word, SPRITES. SPRITES$ has to be followed
by a number within brackets. This number is a reference number for this
sprite shape, so that you can call it up when you want it. This is the point at
which the sprite is actually created. It’s still invisible, however, until we
deliberately place it on the screen by using a PUT SPRITE command. This
command has to be followed by five numbers. The first of these is a sprite
plane. This is a sort of priority order of sprites, and it’s important only if you
have more than one sprite. If you have two sprites, one on plane 0 and the
other on plane I, then when the sprites meet, the one on plane 0 will always
appear to pass in front of the sprite on plane 1. All sprites will appear to pass
in front of anything else that is drawn on the screen (the ‘playfield’).
Following the sprite plane number is a comma, then two numbers in
brackets, also separated by a comma. These are the familiar X and Y
position numbers. They refer to the screen position in the usual way. A
comma follows, then a colour number, because you can have your sprite in
any colour that you like. The final number in the PUT SPRITE command is
the reference number for your sprite, the number that you gave it in the
SPRITES command. You can use for background any screen in the range |
to 3. Only the text screen, SCREEN 0, cannot be used with sprites.

Now take a look at the program in Fig. 9.3. This starts with SCREEN 2.0.

10 SCREEN2,0:CLS:SP$=""

20 FOR NZ=1 TO 8:READ KZ%Z

30 SP$=SP%$+CHR$ (K¥X) : NEXT

40 SPRITE$(1)=5P%

5S¢ PUT SPRITE 0, (128,96),11,1

6@ GOTO60

100 DATA 0,195,36,24,69,66,129,0

Fig. 9.3. Creating a sprite and placing it on the screen.

The SCREEN 2 part is the familiar command to select the high resolution
screen, but the extra 0 is a new feature. What this does is to select the size of
all the sprites on the screen. Using a 0 here selects small sprites, a 1 selects
larger sprites. You can also use the numbers 2 or 3 for gigantic sprites, but
that needs rather more preparation — we’ll look at it later. Line 10also clears
the screen, and prepares an empty string SP$ ready for use. Lines 20 and 30
then fill this string, reading numbers from the DATA line (line 100),
converting each into CHRS form, and adding to the string. In line 40,
SPRITES$(1) is then equated to the shape-string, SP$, and your sprite is
formed. Line 50 then places the sprite on the screen. We're using plane 0, a
position around the centre of the screen, colour 11, and the reference
number of | which matches the number we used in the SPRITES
instruction. Line 60 then keeps things steady so we can look at the shape.
That'’s it!

/dentifiable Flying Objects 131

Frankenstein’s fun

Now that we have created this object, what about using it. The first th