




































/ 
( 

6502 message program 

Here are the mnemonics and hex codes for the 6502. Before you run the program you need 
to poke the character codes for your message into free RAM, followed by 255, the signal for 
the end of the message. Then put the address, in hex, of the first location where the 
message is stored, in the second line of the program. Put an address in yourcomputer's 
screen memory in the fifth line. 

You also need to fill in the seventh line with the address where the second instruction in 
the program will be stored in your computer. This the computer jump back to 
repeat the program. 

fi:2 Inthefourth lineof 
Mnemonics Hex codes the hex codes the 
LDX#&OO A200 figu re 07 tells the 
LDA messaqe address, X ",B D message address computer how 

CMP#&FF C9FF many locations to 

BEQ to RTS instruction F007 1.1) ( iumptoreachthe 
ST A screen address X 90 screen address RTS instruction. 

/' INX Ea 
J M P address of 2nd instruction address of 2nd instruction 
RTS "60 

This program uses another addressing 
mode, called "indexed addressing". In 
indexed addressing, the contents of the X or 

In the first line, the computer puts 0 into the 
X register. The second instruction uses 
indexed addressing so the computer adds 
the contents of the X register to the address 

CMP#&FF 
72.. 

o 
CMP in the third line makes the computer 
compare the byte in the accumulator with 
&FF (hex for 255), the signal for the end of 
the message. If they are equal it sets the 
zero flag to I. The next instruction,BEQ, 
stands for "branch if equal" (i.e. if the zero 

SCREE:N MEMORY 

Next, in the fifth line, the program uses 
indexed addressing to store the byte in the 
accumulator (the message byte) at the 
address given in the instruction plus X. 

INX stands for "increment X" and it 
makes the computer add I to the contents of 

Y registers are added to the operand to give 
the address where the data is stored. The 
second and fifth lines use indexed addressing. 

in the instruction. The result gives it 
the address of the data to be loaded into the 
accumulator (a byte of message). 

Seven bytes 

c=:n=cn 
flag is I). In the hex codes it is followedbya 
number telling the computer how many 
locations to jump. We wantthe computer to 
branch to RTS if the message byte equals 
255 and there are seven bytes between the 
branch instruction and RTS. 

the X register. Then it jumps back to the 
second instruction. This time X is I, so it 
loads the next byte of the message into the 
accumulator and stores it at the next screen 
location. 

Jumping and branching 
Making the computer go to an mstruction in another part of the program is called 
branching. There are three different ways of branching: Jumps, subroutines and 
conditional branches. In a conditional branch the computer carries out a test and 
then branches, or goes on with the next mstructJon, dependmg on the result ofthe 
test. You can find out more about, conditional branches over the page. Jumps just tell 
the computer to go to a certain address. 

The program counter 
The program counter is a speciall6-bit register which holds the address of the next 
instruction the computer is to carry out. The computer reads the number in the program 
counter and then goes to the location with that address to fetch its next instruction. Then the 
program counter is increased by one so it points to the next memory location. 

When you tell the computer to jump or 
branch to a certain address, that address is 
put in the program counter and the 
computer then carries out the instructions in 

Subroutines 

Jump 

sequence from that address. The opcodes 
for a jump on the zeo and 6502 are shown in 
the picture above. 

The instruction "CALL address" on the zeo and "JSR address" (jump to subroutine) on the 
6502, tell the computer to go to a subroutine. This is just like in BASIC and at the end of the 
subroutine you need the return instruction (RET on the zeo and RTS on the 6502). 

When you tell the computer to go to a 
subroutine, the address of the subroutine is 
put in the program counter. The contents of 
the program counter (the address ofthe 

When the computer reaches the RTS or RET 
instruction at the end of the subroutine, it 
retrieves, or "pops", the last item off the 
stack and puts it in the program counter. 

instruction after CALL or JSR) are stored or 
"pushed" on the stack. The stack is a special 
part of RAM set aside for the computer's use 
(see page 10). 

This is the address of the instruction after 
the one which sent it to the subroutine. This 
is also what happens when you tell the 
computer to run a machine code program. 35 



Conditional branches 

In a conditional branch the computer tests one of the bits in the flags register and then, 
depending on the result, either branches or carries on with the next instruction. Here are the . 
bits in the flag register which you can test in conditionalbranches. 

III NorS l& \::=!" &l r;;o Y ) c Q 
~ ~ r7I 

0 ~ L 1,11 ( ~ I)" 

?r 
).-

7t ~ 
Z This is the zero 
flag and it is set to 1 
if two pieces of data 
are equal. 

V :..& il,,;l ~ IQ ~I " I IbO . 

N or S This is the sign V or P IV This is called the overflow bit on the 6502. C This is the carry 
bit. It is referred to as N On the Z80 it has two functions and is called the flag. It is set to 1 
on the 6502 and S on the parity/overflow. As an overflow bit it is set to 1 when whentheans werto 
Z80. It is set to 1 when the result of a calculation in two's complement a sum will not fit in 
the result of a notation (see opposite) results in a carry over to the one byte. 
calculation is negative sign bit. 
and 0 for positive As a parity bit it is set to 1 if there is an odd nwnber 

. results. of ones in a byte and is used for checking purposes . 

Various instructions in addition to the 
compare instruction cause these flags to be 
automatically set or cleared. For example, 

Conditional branch opcodes 

on the 6502 the Instruction DEC 
(decrement) affects the sign and zero 
flags .• 

Here are the conditional branch instructions for testing each bit. 
Z80 6502 
Jump if •.. Branchif .•. 

JP C ................ there is a carry (C = 1). BCS ................ there is a carry (C = 1). 
JP NC .... .. ....... nocarry(C = 0) BCC ................ no carry (C = 0) 
JPZ ................ equal(Z = 1) BEQ ................ equal(Z = 1) 
JP NZ .............. notequal(Z = 0) B NE ................ not equal (Z = 0) 
JP M ............... minus(S = 1) BMI. .............. .. minus (N = 1) 
JP P ................ plus(S = 0) BPL. ................ plus (N = 0) 
JPPO .............. parityodd(PN= 1) BVS ................ overflow set (V = 1) 
JP PE ............ .. parity even (PN = 0) BVC ................ overflow clear (V = 0) 

~o :;:, ~JB-,o ( 

tQ&ojPo 

zao 
r- JP C address JRNC&05 ~ 

l'- j ~~ 
Jump Slocations if I:;\~ BCS &05 

~ 

~ 

there is nocany. ID 
zao ~ ~ 6502 6502 

~ 
Jump to a certain 

Branch 5 locations if Branch 5 locations if r address if there is a 
~ carry. le there is a carry. equal. 

~ 

After the "JP test" instruction on the Z80 you 
give the computer the address of the 
instruction you want it to jump to. On the 
6502 you give the computer a number which 
tells it how many locations it has to jump 
forwards or backwards to find the 
.instruction. This is called "relative 

.~ ~ 
addressing" and the number is called the 
"displacement", or "offset". 

The zao has an additional conditional 
branch instruction, "JR test" , which you use 
with a displacement rather than an address. 
JR stands for "jump relative" and you can only 
test the zero flag and the carry flag withJR. 

,.. A complete list of your microprocessor's instruction set will tell you which instructions affect which 
flags. 

Remember to count 
Working out the displacement two bytes for an address. 

. When you give the computer a displacement number in a conditional branch, the 
computer works outthe address 6fthe instruction it is to jump to by adding or subtracting 
the displacement from the program counter. To work outthe displacement, count the 
number of bytes up to and including the instruction you want to jump 10. Start atthe 
instruction after the conditional branch and count that as 0 (because the program counter 
will already point to that instruction). For example, here are two short 6502 programs 1\1,-11\ 
which show how you work out the displacement. (The method is the same for the Z80.) 

LDAaddress 
CMP #&FF 

(
BNEtoRTS 
STAaddress 
RTS 

To make the computer jump to the RTS 
instruction in the example above, the 
displacement is 3. 

STA tb hb RTS 

In the example below, the displacement 
to make the computer jump back to the 
ADC instruction is - 6 

LDA #&OO 
ADC#&01 

( CMP#&FF . 
BNE to ADC Countlhis 
RTS _ mstructIon 

~F~ 
-...ui 

~ asO. LDA 00 ADC 01 CMP FF BNE RTS 

Forwards and backwards jumps 
For forwards jumps you just translate the displacement into a hex number and insert it in the 
program. For backwards jumps, though, the displacement is a negative number and there is 
no way of indicating negative numbers in eight bit binary. Instead, you use a different system 
of notation called "two's complement" . In two's complement, the left-hand bit is used as a 
sign bit. If this bit is 1 the number is negative. If it is 0 it is a positive number. 

Two's comDh~mlerlt 
1. To work outthe two's complement of a 
number, say 6 (the displacement for the 
program above), first write down the 
number in binary. 

1285 645 325 165 8s 45 25 15 
6=00000110 

1 1 0 0 
2. Then you change all the Os to I and the Is 
to O. This is called "flipping the bits" or 
IIcomplementing" a number. The result is 
called the "one's 

111111 

1 and 1 make 
Ocarry1. 

complement". 
3. Next add I. The 
result is the two's 
complement of the 
number. 

This is the two's 
complement of 6. 

4. Now you need to convert this to hex to 
insert it in the program. The easiest way to 
do this is to divide the number down the 
middle and work out the decimal and then 
the hex value of 

111010 

8s 45 25 15 
1 1 1 1 
= decimal 15 
= hexF 

8s 45 25 15 

l ' 0 1 0 
= decimal 10 
=hexA 

So the hex representation of the two's backwards displacement you can have. 
complement of 6 is FA and for a backwards The biggest forwards displacement is 127, 
jump you insert this number in the program. the highest number you can make with the 
In two's complement, the highest number eighth binary digit set to 0 to indicate a 
you can represent is 128. This is the bigge:..st:r-~p-=.O::.Si:::ti:::v-=.e-=.n:::umb_~.e_r_. _________ , 

---=----~...:: Can you wo rk out th e hex forthe two's 
~ complement of12, 18 and 97 IAnswer page48) 

37 



Screen flash program 
On these two pages there is a program which swaps two blocks of display on the 
screen to make a flashing effect. It shows how simple animation works. The 
program for the Z80 is given below and the one for the 6502 is on the opposite page. 
At the end there are guidelines for runnmg the program for both micro processors. 

zao screen flash 
Put very simply, the program swaps the two blocks of the diplay by loading a byte from 
each block into the registers, then storing the byte from block b in the screen address for 
block a and vice versa. 

ADDRESS b 

ADORESS a. 

The program uses indirect addressing. The 
screen addresses for the first byte of each 
block are stored in registers HL and DE. 
The computer reads the addresses in these 
registers each time it loads or stores the 
bytes. After swapping two bytes the 
instruction INC (mnemonic for increment) 
makes it add one to HL and DE so that when 

******************************** 
**********************.********* 

00000000000000000000000000000000 
00000000000000000000000000000000 

the program repeats, these are the 
addresses of the next two bytes in each 
block on the screen. 

Block a 

Blockb 

Register B holds the number of bytes to 
be swapped. Each time the program 
repeats, B is decremented (decreased) by I 
so it acts as a counter. WhenB = O all the 
bytes have been swapped. 

zao program jg n = number of bytes in one block; a = first address of block a; b = first address of block b. 
~ 

Mnemonics Hex codes Meaning (HL holds address 
LOB,n 06,n Counter. for block a and \-

LO HL, (address a) 21 , address a Put address of block a in HL. ) DE ho lds address 

LO DE, (addressbl 11 , address b Put address of block b in DE. 
for block b. "I--

LDC,(HL) 4E Load C with contents of address in HL (indirect addressing). 
LO A,(OE) lA Load A with contents of address in DE (indirect addressing). 
LD(HL).A 77 Store contents of accumulator at address in HL (indirect). 
LOA,C 79 Put C (first byte block a) into accumulator. 
LO(OE).A 12 Store contents of accumulator at address in DE. 
INCHL 23 Add one to HL and DE. 
INCOE 13 
OECB 05 DecrementB, the counter. 

LOA,&OO 3E.00 Put 0 in the accumulator 
CPB B8 Compare B with contents of the accumulator (0). 

If B does not equal zero, jump back &F310cations to load 
JR NZ to 4th instruction 20,F3 next bytes into registers. F3 is hex for two's complement 

ofl3 (see page 31). 
RET C9 Return. 

Filling in the data and addresses 

n (number of characters in 
one block) To find n, multipl 
the number of characters in 
a line by the number of lines 
in one block. Convert to hex. 

addresses a and b If you want to swap the top two 
lines of the screen with the next two lines, make 
address a the first address of your computer's screen 
memory. Address b is the address for block a plus the 
number of bytes to be swapped. Convert both 
addresses to hex. 

~ 
~ 

"-

6502 screen flash 

This program swaps the two blocks, byte by byte (i.e. character by character), starting 
with the last byte in e~ch block. It loads these bytes into the registers, then stores the byte 
from block a in the screen location for block b and vice versa. Then the program is 

:ep:~~~:~~~~~~~~~:~~~~~~~~~~~ . ~* R COUN~ A~XT.~ER ~ 
b 00000000000000000000000000000000 ~ . _ _ . __ 

00000000000000000000000000000000 

IaI:<JI:<J ca Ir!:8IBI23 
L2 L2':=tr§1-----:J 

It uses indexed addressing to find the 
address for each byte. The total number of 
bytes in one block is loaded into the X 
register. Then, to store or load a byte, the 
number in the X register is added to the 

staning address for each block. The 
instruction DEX (decrement X) makes the 
computer subtract 1 from X so that, when 
the program repeats, the computer fetches 
the next byte back in the display. 

6502 screen flash program 
See the bottom ofthe opposite page for how to work out the values of n, a and b. Then 
subtract I from a and b so that when the computer adds X it gets the last address in each 
block, rather than the first address of the next line. (Make sure n, a and b are in hex.) 

Mnemonics Hex codes M eaninll 
LOX#n A2n Load X with the number of bytes in one block. 
LOA address a, X BD address a Put contents of location with address a + X into accumulator. 
TAY A8 Transfer contents of accumulator to register Y. 
LOA address b, X BOaddressb Put contents of location with address b + X into accumulator. 
STA address a, X 90 address a Store contents of accumulator at address a + X. 
TYA 98 Transfer contents of Y register back to accumulator. 
STA address b, X 90 addressb Store contents of accumulator at address b+ X. 
OEX CA Decrement X. Zero flag is set to I when X O. 

B N E to instruction two DOEF Branch back &EF locations if X is not equal to o. EF is the 
hex for two's complement of 17 (see page 37). 

RTS 60 Return 

Loading and running the program for the zao or 6502 
The best way to run this program is as a 3. Next, add the following lines to the end 

'machine code subroutine in the hex of the program: 
loader. To do this, follow these steps: 240 CALL 8ddress where machi ne 
1. Type in the hex loader and put the hex cod e i s s tor ed 

250 FOR K=l TO 500 
codes for your computer's 260 NEXT K Change figure 500 indelay 
microprocessor in line 160. 270 BDTO 240 loop to suit your computer. 

2. At line 180 you need two loops to poke 4. Now type RUN to run the program. The 
the characters for the display into the hex loader pokes the hex codes into the 
screen memory. For example, here are memory, then pokes the display codes 
the lines for two rows of * s (code 42) into the screen memory. Line 240 makes' 
followed by two rows olOs (code 48), for a go to the location where the machine c 
computer with a 40 column screen. program is stored and carry out the 

180 
190 
200 
210 
220 
230 

FOR J=O TO 79 
POKE first screen 
NEXT J 

instructions. By itself, the machine code 
program only swaps the display once, so 

address + J. 42 line 270 makes it call the program again 

FOR J=80 TO 159 
POKE first screen address + J~48 
NEXT J 

and again to make a flashing effect. You 
need the delay loop because the machine 
code is so fast. 

39 



Going further 
[f you want to find out more about machine code the best way is to try writing your 
own short programs and to test and study programs wri tten by other people. One 
good way to use machine code is as a short subroutine to carry out a particular task 
in a BASIC program. For instance, machine code is particularly suitable for sorting 
data or filling the screen with graphics because it is faster and takes less memory 
space than BASIC. You can find subroutines for dOing things like this in magazines. 
If the subroutines are written specially for your computer you can run them without 
alteration. If they are written for another make of computer which uses thesame 
microprocessor you will need to change any addresses in the program for 
addresses in the area in your computer's memory that you have chosen to store 
machine code. 

Machine code subroutines 
Here are the steps you need to follow to use 
a machine code subroutine in a BASIC 
program. 
1. Make room in the memory for the 
machine code by lowering the top of user 
RAM (see pages 20-22). 
2. Put the codes for the machine code 
subroutine into line 160 of the hex loader 
program on page 24. (Make sure there is a 
return instruction at the end of the machine 
code program.) Add lines to poke in any 
data bytes if necessary, then type in and run 
the hex loader. 
3. Number your BASIC program using line 
numbers starting after those used in the hex 
loader. At the point where you want the 
computer to carry out the machine code, 
put your computer's command for running a 
machine code program as a line in the 
BASIC program. 

This tells the 
computer to go to 
location 16002 and 
carry out the 
instructions there. 

B 
'a ""1S /C 

<0 ~~ 
30~ 
s~o~ 

6c c"'I£.<.. ~ 
;tc ~. - 1"00 

"'-c.,. ~ -< 
4. Type the BASIC program into your 
computer and then type RUN. The 
computer will carry out the BASIC 
instructions and when it reaches the line 
telling it to run the machine code program it 
will go to the address where the machine 
code is stored and carry out the 
instructions. The return instruction at the 
end of the machine code will send the 
computer back to the next line in the BASIC 
program. 

Using an assembler 

An assembler (a program which enables 
you to type in a machine code program in 
mnemonics) makes machine code 
programming much easier. You can buy 
an assembler on cassette for most home 
computers and some, such as the BBC, 
have a built-in assembler. 

With an assembler you can type in 
comments alongside the mnemonics to 
remind you what each line does. The 
assembler will then display the program 
on the screen in hex and mnemonics, with 
the addresses where the instructions are 
stored and the comments. 

The assembler will automatically 
reverse the pairs of digits in addresses 
and work out the address or displacement 
for a jump. Some assemblers allow you to 
use symbolic names for data, like 
variables in BASIC. A good assembler 
also has a debugger to find mistakes and 
an editor to help you correct them. 

Suggested books 
There are lots of books on machine code 
specially written for one partiCu!ar make of 
microcomputer. The best way to choose 
one is to read the reviews in computer 
magazines. You may also find the following 
books useful: 
Programming the Z80 and Programming 
the 6502, both by Rodney Zaks and 
published by Sybex. These are very 
detailed guides with complete lists of all the 
instructions for each microprocessor. They 
are not easy to read for beginners, but they 
are useful for reference. 
VIC 20 Programmer's Reference Guide 
published by Commodore. 
6502 Machine Code for Beginners by A. P. 
Stephenson, Newnes Microcomputer Books. 

.t: 
Cl 
'6 
)( 

" • ~ 
i!! 
i.: 

., 

.t: 
Cl 
'6 
)( 

" • ~ 
" ~ i.: 

Decimal/hex conversion charts 
Thls chart converts hex numbers from 0 to Ft to decimal and vice versa. 

Hex to decimal 
To convert a hex number to decimal read 
along the row for the first hex digit in your hex 
number and down the column for the second 
hex digit. The number where the row and 
column meet is the decimal equivalent for 
your hex munber, e.g. hex Al is decimal 161. 

Decimal to hex 
To convert a decimal number to hex, find 
the decimal number in the chart. Then read 
back along the row for the first hex digit and 
up the column for the second hex digit e.g . 
154 is 9A. 

Second hex digit 
0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 
1 16 17 18 19 20 21 22 
2 32 33 34 35 36 37 38 
3 48 49 50 51 52 53 54 
4 64 65 66 67 68 69 70 
5 80 81 82 83 84 85 86 
6 96 97 98 99 100 101 102 
7 11 2 113 114 115 116 117 118 
8 128 129 130 131 132 133 134 
9 144 145 146 147 148 149 150 
A 160 161 162 163 164 165 166 
B 176 177 178 179 180 181 182 
C 192 193 194 195 196 197 198 
0 208 209 210 21 1 212 213 214 
E 224 225 226 227 228 229 230 
F 240 241 242 243 244 245 246 

Converting addresses 
To use the chart to convert hex addresses, 
look up the decimal equivalent for the first 
pair of digits in the address. This is the page 
number. Then look up the decimal 

7 8 9 A B C 0 E 
7 8 9 10 11 12 13 14 

23 24 25 26 27 28 29 30 
39 40 41 42 43 44 45 46 
55 56 57 58 59 60 61 62 
71 72 73 74 75 76 77 78 
87 88 89 90 91 92 93 94 

103 104 105 106 107 108 109 11 0 
119 120 121 122 123 124 125 126 
135 136 137 138 139 140 141 142 
151 152 153 154 155 156 157 158 
167 168 .169 170 171 172 173 174 
183 184 185 186 187 188 189 190 
199 200 201 202 203 204 205 206 
215 216 217 218 219 220 221 222 
231 232 233 234 235 236 237 238 
247 248 249 250 251 252 253 254 

equivalent for the second pair of digits to 
find the position on the page. Multiply the 
page number by 256 and add the position 
on the page. 

Two's complement conversion chart 
This chart gives the two's complement in 
hex of decimal numbers from -I to -128. 
To convert a number to two's complement, 

find the number in the chart, then read 
along the row for the first hex digit and up 
the column for the second digit. 

Second hex digit 

F E 0 C B A 9 
F 1 2 3 4 5 6 7 
E 17 18 19 20 21 22 23 
0 33 34 35 36 37 38 39 
C 49 50 51 52 53 54 55 
B 65 66 67 68 69 70 71 
A 81 82 83 84 85 86 87 
9 97 98 99 100 101 102 103 
8 113 114 115 116 117 118 119 

Doing conversions on a calculator 
When you do conversions on a calculator 
the calculator displays the remainder as a 
decimal number. For example, if you are 
converting decimal 134 to hex you divide by 
16 then convert the answer and remainder 
to hex digits. A calculator would give you 
the answer as 8.375. 

8 7 6 5 4 3 2 1 
8 9 10 11 12 13 14 15 

24 25 26 27 28 29 30 31 
40 41 42 43 44 45 46 47 
56 57 58 59 60 61 62 63 
72 73 74 75 76 77 78 79 
88 89 90 91 92 93 94 95 

104 105 106 107 108 109 110 11 1 
120 121 122 123 124 125 126 127 

To convert the remainder to a whole 
number you subtract the number before the 
decimal point, then multiply by the number 
you divided by. 

8.375 - 8= 0.375 x 16 = 6 

So 134 .,. 16 = 8 remainder 6 therefore 
decimal 134 is 86 in hex. 

F 

15 
31 
47 
63 
79 
95 

111 
127 
143 
159 
175 
191 
207 
223 
239 
255 

0 
16 
32 
48 
64 
80 
96 

112 
128 

41 



Z80 mnemonics and hex codes 
The mnemonics and hex codes for the instructions covered in this book are givenon 
the next few pages. The term "impllcit addressing" used in these llsts is just the name 
for instructions where no operand need be specified in the hex code. There are a 
few other instructions not llsted here and if you want to go further with machme code 
you will need a complete llst of the Z80 instruction set (see page 40). The following 
abbreviahons are used in these llsts: 
n = number rr = register pair c = condition 
nn = two byte number x = address d = displacement 
r = register 

ADC A,D Add with carry, a CALL x Go to subroutine DEe r Decrement register r. 
number, n, to the accumulator. starting at address x. (Implicit addressing.) 
(Immediate addressing.) (Immediate addressing.) 

DECA 3D 
ADCA,n CE,n CALLx CDx DECB 05 

CALL c,X Go to subroutine DECC OD 
ADC A,r Add with carry, 

starting at address x DECD 15 register r to the accumulator. 
(Implicit addressing.) depending on condition c. DECE 1D 

cmaybe Z(equal); NZ (not DECH 25 
ADCA,A 8F equal); C (carry);NC (no DECL 2D 
ADCA,B 88 carry); PE (parity even); PO 

DEe rr Decrement register ADCAC 89 (parity odd); M (minus) or P 

ADCA,D 8A (plus). (Immediate pair IT. (Implicit addressing.) 

ADCA,E 8B 
addressing.) DECBC OB 

ADCA,H 8C CALLZ,x CC,x DECDE 1B 

ADCA,L 8D CALLNZ,x C4,x DECHL 2B 
CALL C,x DC,x DEC IX DD2B 

ADC HL,rr Add with carry, CALLNC,x D4,x DECIY FD2B 
the contents of register pair IT CALL PE,x EC,x DEC (HL) Decrement to HL. (Implicit addressing.) CALLPO,x E4,x contents of address held in HL. 

ADCHL,BC ED4A CALLM,x FC,x (Indirect addressing.) 
ADC HL,DE ED5A CALLP,x F4,x 

DEC (HLI 35 
ADC HL,HL ED6A CCF Complement carry flag. 

(Implicit addressing.) INe r Increment register r. 
ADDA,D Addanumber,n,to (Implicit addressing.) 
the accumulator. (Immediate CCF 3F 
addressing.) INCA 3C 

CP n Compare contents of INCB 04 
ADD,n C6,n accumulator with data n . INCC OC 

(Immediate addressing.) 
INCD 14 ADD A,r Add register r to the CPn FE n INCE 1C accumulator. (Implicit 
INCH 24 addressing.) CP r Compare contents of 

register r with the accumulator. INCL 2C 
ADDA,A 87 (Implicit addressing.) 
ADDA,B 80 INC n Increment register pair 

ADOA,C 81 
CPA BF' IT. (Implicit addressing.) 

ADDA,D 82 
CPB B8 INCBC 03 

ADDA,E 83 
CPC B9 INCDE 13 
CPD BA 

ADDA,H 84 INCHL 23 
ADDA,L 85 

CPE BB 
CPH BC INC (HL) Increment contents 

ADD HL,rr Add the contents CP L BD of address held in HL. (Indirect 

of register pair IT to HL. addressing.) 

(Implicit addressing.) CP (UL) Compare contents of 
INC(HLI 34 accumulator with contents of 

ADD HL,BC 09 address held in HL. (Indirect JP x Jump to address x. 
ADD HL,DE 19 addressing.) (Immediate addressing.) 

ADD HL,HL 29 CP(HLI BE JPx C3x 

-

JP (rr) Jump to address held in lID A, (x) Load accumulator LD E,r Load register E with 
register pair IT. (Implicit '. with contents of address x. the contents of register r. 
addressing.) (Absolute addressing.) (Implicit addressing.) 

JP(HLI E9 LDA,(xl 3A,(xl LD E,A 5F 

JP (lXI DDE9 LDE,B 58 

JP (lYI FDE9 LD n, (x) Load register pair IT LDE,C 59 
with contents of addresses x LDE,D 5A 

JP c,x Jump to address x and x+ 1. (Absolute LD E,E 5B 
depending on condition c. addreSSing.) LDE,H 5C 
c maybe Z (equal); NZ (not 

LD BC, (xl ED4B,(xl LD E,L 5D 
equal); C (carry); NC (no 

LD DE, (xl ED5B,(xl LD H,r Load register H with carry); PE (parity even); PO 
(parity odd); M (minus) or P LD HL, (xl 2A,(xl the contents of register r. 
(plus). (Immediate (Implicit addressing.) 
addressing. ) LD A,r Load the accumulator 

LDH A 67 with contents of register r. 
LDH,B 60 JPZ,x CA,x (Implicit addressing.) 

JP NZ,x C2,x LDH,C 61 

JPC,x DA,x 
LDA,A 7F LDH,D 62 

JP NC.x D2,x 
LDA B 78 LDH,E 63 
LDA,C 79 

JP PE,x EA,x LDH,H 64 

JP PO,x E2,x 
LDA,D 7A LDH,L 65 
LDA,E 7B 

JPM,x FA,x 
LDA,H 7C LD L,r Load register L with the 

JPP,x F2,x 
LDA,L 7D contents of register r. (Implicit 

addressing.) 
JR d Jump relative. Jump d 

LD B,r Load register B with LD L,A 6F bytes (the displacement). 
the contents of register r. LDL,B 68 (Relative addressing.) 
(Implicit addressing.) LDL,C 69 

JRd 18 d 
LDB,A 47 LDL,D 6A 

LDB,B 40 LD L,E 6B 
JR c,d Jump relative. Jump d 
bytes (the displacement) LDB,C 41 LDL,H 6C 

depending on condition c. LDB,D 42 LD L,L 6D 

c may be NZ (not equal); Z LDB,E 43 LD r, (n) Load register r with 
(equal); NC (no carry) arC LDB,H 44 contents of address held in 
(carry). (Relative addressing.) LDB,L 45 register pair IT. (Indirect 

JR NZ,d 20,d 
addressing.) 

JRZ,d 28,d LD C,r Load register C with LOA, (BCI OA 

JR NC,d 30,d 
the contents of register r. LDA,(DEI 1A 

JRC,d 38,d 
(Implicit addressing.) LDA,(HL) 7E 

LDC,A 4F LD B,(HLI 46 
LD r,n Load register r with LDC,B 48 LD C,(HL) 4E 
data n. (Immediate LDC,C 49 LD D,(HLI 56 
addressing.) LDC,D 4A LDE,(HLI 5E 

LDA,n 3E,n LDC,E 4B LD H,(HLI 66 

LDB,n 06,n LDC,)-I 4C LD L,(HL) 6E 

LDC,n OE,n LDC,L 4D LD (x),A Store the contents of 
LOO,n 16,n the accumulator in address x. 
LDE,n 1 E,n LD D,r Load register D with (Absolute addressing.) 
LD H n 26,n the contents of register r. 

32,x (Implicit addressing.) LD (xl,A 
LD L,n 2E,n 

LDD,A 57 LD (x),rr Store the contents of 
LD rr,nn Load register pair rr LDD,B 50 register pair IT at addresses x 
with two byte number nn. LDD,C 51 and x + 1. (Absolute 
(Immediate addressing.) 

LDD,D 52 
addressing.) 

LD BC,nn 01,nn LDD,E 53 LD(xl,BC ED43,x 
LD DE,nn 11,nn LDD,H 54 LD (xI,DE ED53,x 43 
LD HL,nn 21,nn LDD,L 55 LD (xI,HL 22,x 



LD (rr),r Store the contents of RETC D8 SBC A,(HL) Subtract with 
register r at the address held in RETNC DO carry the contents of address 
register pair IT. (Indirect RETPE E8 held in register pair ill, from 
addressing.) RETPO EO the accumulator. (Indirect 

LD(BC)A 02 RETM F8 addressing). 

LD(DE)A 12 RETP Fa SBCA,(HL) 9E 
LD (HL)A 77 SCF Set carry flag. (implicit 
LD(HLI,B 70 SBC A,n Subtract with carry 

addressing.) 
LD(HLI,C data n from the accumulator. 71 

(Immediate addressing.) SCF LD(HLI,D 72 37 

LD (HL),E 73 SBCA,n DE,n SUB n Subtract data n from the 
LD (HL),H 74 accumulator. (Immediate 
LD (HL),L 75 SBC A,r Subtract with carry addressing.) 

LD(rr),n Storedatanat 
contents of register r from the SUB,n D6,n 
accumulator. (Implicit 

address held in register pair IT. addressing.) SUB r Subtract contents of 
(Immediate/indirect register r from the 
addressing.) SBCAA 9F accumulator. (Immediate 

LD (HL),n 36 SBCA,B 98 addressing.) 
SBCA,C 99 

SUBA 97 RET Return from subroutine. SBCA,D 9A 
(Indirect addressing.) SBCA,E 9B 

SUBB 90 
SUBC 91 RET C9 SBCA,H 9C SUBD 92 

RET c Retwn from subroutine SBCA,L 9D 
SUBE 93 

depending on condition c. 
SBC HL,rr Subtract with carry SUBH 94 

ccanbe Z (equal); NZ (not SUBL 95 
equal); C (carry); NC (no contents of register pair IT from 

carry); PE (parity even); PO register pair ill. (Implicit SUB (HL) Subtract the 
(parity odd); P (plus); M addressing.) contents of address held in HL 
(minus). (Indirect addressing.) SBCHL,BC ED42 from the accumulator. (Indirect 

RETZ C8 SBC HL,DE ED52 addressing.) 

RETNZ CO SBC HL,HL ED62 SUB (HL) 96 

Puzzle answers 
.~ ~ ~ 

~="""';;;;';;;'~ZdY Page 11 complement of a number 15 to subtract It 
&A7in decimal IS 167. 513 mhexis &201 from 256, then convert the answer to hex. 
Page26 

E.g.~=25~his~e~ 1. 25+ 73 (25 is &19 and 73 is &49) 

zao 6502 
Mnemonics Hex codes Mne Hex codes Meaning 

LDA,&19 3E,I9 LDA#&19 A919 Put&19 in accumulator. 
ADDA,&49 C6,49 ADC #&49 6949 Add &49 to accumulator. 

Store contents of 
LD (address), A 32, address STAaddress 8Daddress accumulator at a -certain 

address . 
RET C9 RTS 60 Return 

2 64+12+14(64is&40 12 is &OC and 14is&OE) , 
Z80 6502 
Mnemonics Hex codes Mnemonics Hex codes Meaning 

LDA &40 3E 40 LDA#&40 A940 Put &40 in accumulator. 
ADDA &OC C60C ADC#&OC 690C Add &OC to accumulator. 
ADDA &OE C60E ADC#&OE 690E Add &OE to accumulator. 

Store contents of 
LD(address), A 32,address STAaddress 8Daddress accumulator at a certain 

address. 

RET C9 RTS 60 Return 

Puzzle answers continued on page 48. 

A 

0 

6502 mnemonics and hex codes 
This chart shows the mnemonics and hex codes for all the instructions (plus a few 
more) covered in this book. The mnemonic instructions are given down the left and 
the hex codes for each instruction in the different addressing modes are shown 
across the chart. Zero page addressing is just like absolute addressing, i. e . the 
operand is the address where the data is stored, but the address must be in page 
zero (i. e. locations 0-255) ofthe memory (see page la). Implied addressing is just the 
term used to describe instructions where no operand need be specified, e. g. CLC. 
There are a number of other instructions not given here, and if you want to go further 
with machine code you will need to get a complete list of the 6502 instructionset. 

.'J ~ >< >-
ddressing mode 

.,!? .'J en 

" " " 
~ 

" ~ • ~ ~ > 
~ " 

a.. 
~ " 

.,,! '" E " E' ~ ~ 0. • 
§ .0 

~ " " § 0; 
« .E .E er 

Data Any Address Address None 
perand is address in page + x +y ment 

zero register register 

ADC plus the 69 6D 65 7D 79 

Notethat not all the instructions can 
be used in all the addressing modes. 

(subtract I frorn) memory 

45 



Machine code words 

# Hash sign. This is the sign used on some 
computers to indicate hex numbers. For the 
6502 microprocessor it is used to indicate a 
piece of data. 
& Amper.;and sign. This is another sign 
used to indicate hex numbers. 
Absolute address. The actual address of a 
piece of data. 
Absolute addressing. An addressing 
mode in which the instruction contains the 
address of the data. Also called extended 
or direct addressing. 
Accumulator. The register where bytes of 
information on which arithmetical or logical 
operations are to be carried out, are held. 
Address. A number used to identify a 
location in the computer's memory. 
Addressing modes. The various ways in 
which you can tell the computer where to 
find the data to work on in a machine code 
program. 
Arithmetic logic unit (ALU). The area 
inside the CPU where arithmetical and 
logical operations are carried out. 
Assembler. A program which converts 
instructions written in assembly language 
mnemonics into the computer's own code. 
Assembly language. A method of 
programming the computer using letter 
codes, called mnemonics, to represent 
machine code instructions. 
Binary. A number system with two digits, 0 
and 1 and in which each digit in a number 
has twice the value of the digit on its right. 
Bit. A single unit of computer code, i.e. a 1 
or 0 representing a pulse or no-pulse signal. 
Buffer. A temporary storage area in the 
computer's memory where data is held on 
its way to or from its final destination. 
Branch. An instruction telling the 
computer to jump to another line in a 
program. 
Byte. A group of eight pulse and no-pulse 
signals (or "bits") which represents a piece 
of information in computer code. 
Carry flag. A bit in the flags register which 
is set to 1 when the result of an addition will 
not fit into eight bits. 
Clear. To make a bit, e.g. one of the bits in 
the flags register, zero. 
Complement. Also called "flipping the 
bits" this is the process of changing all the 
Os in a byte to 1 and all the Is toO. 

Conditional branch. An instruction which 
tells the computer to jump to another line in 
the program depending on the result of a test. 
Direct addressing. See absolute 
addressing. 
Disassembler. A program which can 
display the contents of a series of memory 
locations on the screen in assembly 
language. You can buy a disassembler on 
cassette and it is useful for debugging 
machine code p rograms and for examining 
the programs in your computer's ROM. 
Displacement. A number used in ajump 
or branch instruction to tell the computer 
how many locations to jump to find the next 
instruction. Also called an offset. 
flag. A bit in the flags register which is 
used to indicate a certain condition, e.g. the 
presence of a negative number, or of a 
carry over in an addition. 
Hexadecimal, or hex. A number system 
which uses 16 digits (the numbers 0-9 and 
letters A-F). Each digit in a hex number has 
16 times the value ofthe digit on its right. 
Hex loader. A BASIC program which 
converts the hex codes of a machine code 
program into decimal numbers and pokes 
them into the computer's memory. 
High order byte. The first two digits in a 
hex address which represent the number of 
the page in the memory where the address 
is. Also, the two digits which show how 
many 256s there are in a number larger than 
255. 
HIMEM. The highest address in user RAM. 
Immediate addressing. An addressing 
mode in which the data for an instruction is 
included in the instruction. 
Implicit addressing. An addressing mode 
in which the operand is understood and 
need not be specified. 
Implied addressing. Same as implicit, see 
above. 
Indexed addressing. An addressing 
mode in which the contents of an index 
register are added to the address given in 
the instruction to work out the actual 
address of the data. 
Index register.;. The registers used in 
indexed addressing and also, in the 6502, as 
general purpose registers. 
Indirect addressing. An addressing 
mode in which the operand is used as a 

pointer to the data. The operand may be an 
address or, in the ZBO, a pair orregisters, 
and it holds the address of the data. 
Instruction. An operation to be carried out 
by the central processing unit. 
Interpreter. A program which translates 
instructions in BASIC (or other high level 
language) into the computer's own code. 
Instruction set. All the operations which 
can be carried out by a particular 
microprocessor. 
Jump. An instruction which tells the 
computer to go to another line in the 
program. 
LIFO. This stands for "last in/first out" and 
describes the method used by the 
computer to store information in the stack. 
Low order byte. The two hex digits in an 
address which give the position of that 
address within a page of memory. Also, the 
two hex digits which show the number of 
units in a number larger than 255. 
Microprocessor. The chip which contains 
the computer's CPU and which carries out 
program instructions and controls all the 
other activities inside the computer. 
Mnemonic. A letter code used in 
assembly language to represent an 
instruction in the computer's own code. The 
word mnemonic (pronounced nemonic) 
means "to aid the memory" and assembly 
language mnemonics sound like the 
instructions they represent. 
Object code. A program which has been 
translated into machine code from 
assembly language or another high level 
language. 
Offset. See displacement. 
Opcode. The part of an instruction which 
tells a computer what to do. 
Operand. The part of an instruction which 
tells the computer where to find the data to 
work on. 
Operating system. A group of programs 
written in machine code and stored in the 
computer's ROM, which tell it how to carry 
out all the tasks it has to do. 
Page. A subdivision of memory. On most 
home computers a page is 256 locations. 
Pointer. A memory location (or pair of 
registers) which contains the address of a 
piece of data. 
Pop. To remove an item stored in the stack. 
Processor status register. This is the 6502 
name for the flags register (the register 
where each bit is used to record a certain 

condition inside the computer). 
Program counter. The register which 
contains the address of the next instruction 
to be fetched from the memory. 
Pull. Same as pop, i.e. to remove an item 
from the stack. 
Push. To place an item in the stack. 
RAMTOP. The highest address in user 
RAM. 
Register.;. The places in the CPU where 
bytes of instructions, data and addresses 
are held while the computer works on them. 
Relative addressing. An addressing 
mode in which the computer works out the 
address of the next instruction by adding a 
number called the displacement or offset, 
to the address in the program counter. 
Screen memory. The locations in RAM 
which are used to hold information to be 
displayed on the screen. 
Sign flag. The bit in the flags register 
which is used to indicate negative and 
positive numbers. 
Source code. A program written in 
assembly language, or other high level 
language such as BASIC. 
Stack. An area of the memory used by the 
computer for temporary storage and where 
the last item stored is always the first to be 
retrieved. 
Stack pointer. A register in the CPU which 
contains the address of the last item in the 
stack. 
Systems variables. Memory locations in 
RAM which hold information about the 
current state ofthe computer. 
Top of memory. The highest address in 
user RAM. 
Two's complement. A system of notation 
used to represent negative numbers. To 
find the two's complement of a number you 
complement (make all the Is into Os and all 
the Os into Is) the binary for that number and 
then add 1. 
User RAM. The part of RAM where BASIC 
programs are stored. 
Zero flag. The bit in the flags register 
which indicates when the result of an 
operation is 0 and is also used to show when 
two bytes are equal. 
Zero page. The first 256 locations in the 
memory. 
Zero page addressing. Used only on the 
6502, this is an addressing mode in which 
the operand is an address in page zero of 
the memory (i.e. from 0-255). 47 



Puzzle answers contin 
Page 28 

ued Decimal Hex 

48 

High order Low order High order Low order 

307 1 51 &01 &33 00011010 is 26 decimal. 
11111011 is 251 decimal. 
10101010 is 170 decimal. 

21214 82 222 &82 &DE 

759 2 247 &02 &F7 

1023 3 255 &03 &FF 

Page 31 
To adapt the program on page 27 for 
answers greater than 255 you need to delete 
the return instruction and add the lines 

given below. To see the result you use this 
command: 
PRINT PEEK( address 3) + PEEK( address 4)' 256. 

Z80 6502 Meaning 
Mnemonics Hex codes Mnemonics Hex codes 

LDA,&OO 3E,00 LDA#&OO A900 Put 0 in accumulator. 

ADC #&00 6900 
Add with carry, 0 10 

ADCA,&OO CE,OO accumulator. 

ST A address 4 8Daddress4 
Store contents of 

LD(address 4),A 32, address 4 accumulator at address 4. 

RET C9 RTS 60 Return. 

Page 37 
Hex for the two's complement of 12 is &F4; 18 is &EE and 9 is &F7. 

Index 13, 20-21 & ampersand sign, 8, 12, 16, 18, 46 dump, 19 
# hash sign, 12, 16. 18, 46 loader, S, 23, 24, 25. 46 RAMTOP, B, 20, 21, 47 

absolute addressing, 18,27,46 number system,S, 8, 11 , 46 lowering, 20-22 

accumulator, 14-15, 11,30,32, 46 high order byte, 19,28,30,31, 46 registers, 13-14,27,30,31, 47 

address, 8-9. Il, 19,46 HlMEM, 8, 20, 21, 46 relative addressing, 36, 47 

converting to hex or decimal, 11 immediate addressing, 18,27,33,46 REM statement, storing machine 

in machine code, 18·19 implicit addressing, 46 code in, 22 

addressing modes, 27, 46 implied addressing, 46 reserved for use of the operating 

ALU (arithmetic/logic unit), 13, 14,46 increment, 33, 34, 38 system, 8, 10 

ASCII code, 13,24,32 indexed addressing, 34, 39, 46 return instruction, 23, 36 

assembler,5,16,40,46 index registers, 14-16,46 ROM (read only memory), 6, 12, 13 

assembly lang,uage, 5, 17, 19,46 indirect addressing (Z80), 33, 38, 46 running a machine code program, 25 

Atari, 3, 24 instruction, 4, 5, 13-14, 16, 47 screen memory, 8, 13,47 

BASIC, 4, 12,20, 40 instruction set, 16,47 set, to, 29 

big numbers . 28, 30-32 interpreter, 4, 8, 20, 47 sign flag, 14, 36,47 

binary, jumps, 33, 35, 47 source code, IS, 47 
LIFO, 10,47 Spectrum, 13, 24,32 

code, 4, 5, 16 
numbers, 4, 19, 2S, 46 locations, memory, S-9, 10, 11, 12-13 stack, 10, 14, 15,20,35,47 

to hex conversion, 37 lowering RAMTOp, 21 s tack pointer. 14-15, 47 

bit, 4,46 low order byte, 19, 28,30-31,47 subroutines, 35 

branch, 34, 35, 46 machine code , systems variables, 10,20,21,47 

buffers, 10, 46 checklist, 26 Timex 1000,9, 13,22,24 

byte, 4, 13, 19,20, 46 length of program, 20 Timex 2000, 13,24,32 

carry flag, 14.15, 17, 29,30,31,36,46 subroutines, 39, 40 top of memory, 20, 21, 47 

carrying over numbers in addition, 29 , w here to store in memory, 20-22 two's comple ment , 37, 41, 47 

30,31 memory, S-9, 10. 12- 13 user~,S,20,47 

character codes, 13,32 memory map, 8 VIC 20, 7, 13,22 

clear, to, 29, 46 microprocessor, 7, 16,47 zero flag, 32, 33, 34. 36, 47 

Commodore 64, 3, 7 mnemonics, 5, 16-11,47 zero page, 10,45, 47 

comparing, 32 object code, IS, 47 zero page addressing, 45, 47 

complement, 46 offset, 36-37, 47 ZXB1, 9,13,22,24 

conditional branches , 35, 36-37, 46 opcode, 16, IS, 19,47 
control unit, 13, 14 operand, 16, 18, 27, 47 Hex loader conversions 
CPU (central processing unit), 7, operating system, S, 10, Il, 13,20,47 Change these lines for the ZXSl 

14-15, 16. 19 Oricmicro, 3, 7,21 
(Timex 1000): 

crash,20 overflow bit, 36 
databytes, 23, 28 page (of memory), 10, 11, 19, 21,47 40 INPUT H$ 

decimal numbers, 11, 41 parity/overflow bit, 36 70 LET X= 

decrement, 36, 38 PEEK, 12-13, 21, 26, 31 (CODE(Hoj,) ~2B)*16 

direct addressing, 27, 46 pointer, 33, 47 80 Delete 

disassembler.46 POKE, 12-13, 23 9 0 LET Y=CODE 

displacement. 36-37, 46 pop, 35, 47 (H${2 TO ) ) -28 

display file , 8 position on page (of address), 11 , 19. 100 LET X=X+Y 
extended addressing, 27 21 l10 Delete 
flags register, 14-15, 17,29,36 processor status register, 15,29. 47 155 De1ete 

hex. (see also flags register) 160 Delete 

codes, 16, IS, 19 program counter, 14-15,35, 47 Change this line for Atari computers: 

converting 10 decimal, 11 , 41 RAM (random access memory), 6. 12, 90 LET Y=ASC(A$C) ) 

" , 

Other Usbome Books 
There are hundreds of colourful Usbome books for all ages on a wide range of 
subjects, Titles which may be of particular interest to you are: 

This exciting new series takes a serious look at what is happening now in the world of new 
technology. Many people think that such things as lasers, robots, databases and interactive TV 
belong only to the world of science fiction but, as these brilliantly illustrated books show, many of 
them are already in use and affecting our everyday lives. The books take a straightforward approach 
to these apparently difficult subjects, making them easy for everyone to understand. 
Page size: 240 x 170 mm 48 pages 

This up-to-the-minute series on electronic technology explores the worlds of computers, TV and 
video, audio and radio and, in a new title, films and special effects, In a clear visual way, the books 
describe the very latest equipment and show what it does and how it works. They also explain much 
of the confusing technical jargon which usually surrounds these subjects. There are fascinating 
sections on what computers can do for us and how they do it, how TV and video cameras can twn an 
ordinary scene into a pattern of electronic signals that can be stored on tape, and how a recording 
srudio works. Audio & Radio also contains instructions for building a simple radio. 
Page size: 276 x 216 mm 32 pages 



--- Us borne Computer Books 
Usborne Computer Books are colourfu l. straightforward and easy-to
understand guides to the world of hom e computing fo r beginners of al l ages. 

USbbfneGuideto Computers A colourful introduction to the world of 
computers. "Without question the best general introduction to computing I have 
ever seen. "Personal ComputerWorld 

Understanding the Micro A beginner's guideto microcomputers;howto use 
them and how they work. " This introduction to the subject seems to get 
everythingright. " Guardian 

Computer Programming A simple introduction to BASIC for absolute 
beginners. " ... lucid and entertaining . .. "Guardian 

Computer and Video Games All about electronic games arid how they work, 
with expert's tips on howto w in. 'The idea l book to convert the arcade games 
freak to rea l computing."Computing Today . 

Computer Spacegames, Computer Battlegames Listings to ru n on the ZX81 , 
Spectrum, BBC, TRS-80,Apple, VIC20and PET. "Highly recommended to 
anyone of ,,-ny age. "Computing Today 

Practical Thingsto do with a Microcomputer Lots of programs to run and a 
ro!:>otto build which "ViII work with most micros. 

Computer Jargon An illustrated guide to all the jargon. 

Computer Graphics Superbly illustrated introduction tocomputergraphics 
with programs and a graphics conversion chartfor mostmicros. 

Write Your Own Adventure Programs Step-by-step guide to writing adventure 
games programs, with lots of expert's tips. 

Machine Code for Beginners A really simple introduction to machine code for 
the Z80 and 6502. 

BetterBASIC A beginner's guide to writing programs in BASIC. 

Inside the Chip Asimple and colourful account of how the chip works and what 
itcan do. 

+001·99 

ISBN 0-86020-735-8 

ISBN 0 86020 735 8 [1.99 


