

Conditional branches

In a conditional branch the computer tests one of the bits in the flags register and then,
depending on the result, either branches or carries on with the next instruction. Here arethe
bits in the flag register which you can test in conditional branches.

Working out the displacement

When you give the computer a displacement number in a conditional branch, the
computer works out the address of the instruction it is to jump to by adding or subtracting
the displacement from the program counter.

Rememberto count
two bytes foran address.

To work out the displacement, countthe

number of bytes up to and including the instruction you want to jump to. Start atthe
E i A A E p ‘ instruction after the conditional branch and count that as 0 (because the program counter ==
NorS aQ 00 c will already point to that instruction). For example, here are two short 6502 programs l -f‘
) = = which show how you work out the displacement. (The method is the same for the Z80.) ti"'g
b D Al LDA address ~ i—i" ‘
isi CMP #&FF :
Z Thisisthe zero BNE toRTS
flaganditissetto 1 (STA address
iftwo pieces of data
are equal. RTS LDA CMPA FF Y [BNEY| O3 Hf STAY Lb
. NI N| To make the computer jump to the RTS In the example below, the displacement
NorS Y orP/V THE e e = instruction in the example above, the to make the computer jump back tothe
or S This is the sign or is is called the overflow bit on the 6502. This is the carry displacement is 3. i ionis —
bit It isreferredtoasN On the Z80 it has two functions and is called the flag. Itis setto 1 P - ADGinstrustion 8—6. -
onthe6502and Sonthe parity/overflow. As anoverflow bititissetto lwhen when the answerto LDA £&00
Z80.Itis setto 1 when the result of a calculation in two's complement asum will not fit in ADC #8&01
theresult ofa notation (see opposite) results ina carry overtothe onebyte. (CMP #&FF 3
calculationisnegative signbit. BNE to ADC _Co;mt ttljus
and 0 for positive Asaparity bititis setto 1 if there is an odd number RTS = _Instruction =
results. of ones ina byte and is used for checking purposes. as0. LDA 0o ADC {{ O anetl Fr ohe o e
Various instructions in addition to the on the 6502 the instruction DEC Forwards and backwards jumps
compare instruction cause these flagstobe (decrement) affects the sign and zero For forwards jumps you just translate the displacement into a hex number and insert it inthe
automatically set or cleared. For example, flags.* program. For backwards jumps, though, the displacement is a negative number and thereis

no way of indicating negative numbers in eight bit binary. Instead, you use a different system
of notation called “two’s complement”. In two’s complement, the left-hand bit isused asa
sign bit, If this bit is 1 the number is negative. If it is 0 it is a positive number.

Conditional branch opcodes
Here are the conditional branch instructions for testing eachbit.
Z80 6502 '
Jumpif. .. Branchif. . . Two’s complement
¥ L ey there isa carry (C = 1). BES .o thereisacarry (C = 1). 1. Towork out the two's complement ofa
JPNC............nocarry (C = 0) BECHE s Il = no carry (C = 0) number, say 6 (the displacement for the
) |l T R equal(Z=1) BECY o equal (Z=1) program above), first write downthe
RNE e notequal (Z=0) BNE & o not equal(Z=0) number in binary.
jf,:gl rriinu(ss(s 3)1) ggﬂ:.................ﬂ;ﬂl\.‘l(slq(N '—0')1) 2 Thenyou Change allthe Osto 1 and the 1s
................ pug = PPpTTT—— o) 1 - to 0. This is called “flipping the bits” or
IPPD i, parity odd (P/V = 1) g\ég overflow set (V = 1) “eotmlemaRing anf’lfnbgr‘ oot
¥ JPPE ... ot parity even (P/V =0) teesersinennnesOVErflow clear (V = 0) called the "one's
o0 A complement”.
JP C address & 2 Z80 3. Nextadd 1.The Thisisthetwo's
JRNC &05 Jump 8 locations if result is the two's complement of 6.
‘ there isno carry. complement of the
number.
3230 : e 6502 4. Now you need to convert this to hexto
a%rgfe:saifcti e?;nis X Branch 8 locationsif glserzlgtl in m; program. The easiest way to
carry. there isa carry. othis is to divide the number downthe
) | : middle and work out the decimal and then
After the “JP test” instruction onthe Z80you addressing” and the number is called the =3 the hex value of each group of four digits.

give the computer the address of the

instruction you want it to jump to. Onthe

6502 you give the computer a number which

tells it how many locations it has to jump

forwards or backwards to find the
instruction. This is called “relative

* A complete list of your microprocessor’s instruction set will tell you which instructions affect which

flags.

24 85 4s 2s 1s 8 4s 2s 1s

i [s [[N 5 TR H \
=decimal 156 =decimal 10
= hexF = hex A

— |

128s 64s 325 16s 8s 4s 25 1s
30 E6="0. 0 0" BNORE])

IR S R | (5 o 0

Tand 1 make
Ocarry 1.

“displacement”, or “offset”.

The Z80 has an additional conditional
branch instruction, “JR test”, which you use
with a displacement rather than an address.
JR stands for “jump relative” and you can only
test the zero flag and the carry flag withJR.

Sothe hex representation of the two’s
complement of 6is FA and for a backwards
jump you insert this number in the program.
In two's complement, the highest number
you can represent is 128. This is the biggest

backwards displacement you can have.
The biggest forwards displacement is 127,
the highest number you can make with the
eighth binary digit set to 0 to indicaie a

positive number. a7

Canvyou work out the hex forthe two's
complement of 12, 18 and 97 (Answer page 48)

Screen flash program

On these two pages there is a program which swaps twe blocks of display onthe
screen to make a flashing effect. It shows how simple animation works. The
program for the Z80 is given below and the one for the 8502 1s on the opposite page.
Atthe end there are guidelines for running the program for bothmicroprocessors,

280 screen flash
Put very simply, the program swaps the two blocks of the diplay by loading a byte from
each block into the registers, then storing the byte from block b in the screen address for
block a and vice versa.
(g

o T
e P

L:'/V ADDRESS b H
V ADDRE3S Q.

The program uses indirect addressing. The the program repeats, these are the

screen addresses for the first byte of each addresses of the next two bytesineach
block are stored in registers HL and DE. block on the screen.

The computer reads the addressesinthese Register B holds the number of bytes to
registers each time it loads or stores the be swapped. Each time the program

bytes. After swapping two bytesthe repeats, Bis decremented (decreased) by 1
instruction INC (mnemonic for increment) soit acts as a counter. WhenB=0allthe
makesitadd one to HL and DE sothatwhen bytes have been swapped.

Z80 program
n=number of bytes in one block; a=first address of block a; b=first address of block b.

Mnemonics Hexcodes | Meaning (HLholds address
LDB,n 06,n Counter. ? forblockaand

: DE holds address
LD HL, (addressa) 21,addressa| PutaddressofblockainHL.) oot b
LD DE, (addressb) 11,addressb| PutaddressofblockbinDE. .

b 00000000000000000000000000000000

a2 S 2 s s R s R R R R L s Block a

FEREEREERXEEEREFRERRRAFFRFEREERFRER
00000000000000000000000000000000 |51 - 4
000DD0000000ND0000000000000D0000 R

LD C, (HL) 4E Load C with contents of address in HL (indirect addressing).
LD A, (DE) 1A Load A with contents of address in DE (indirect addressing).
LD (HL),A 77 Store contents of accumulator at address in HL (indirect).
LDA.,C 79 Put C (first byte block a) into accumulator.

LD (DE),A 12 Store contents of accumulator at addressin DE.

sl ‘8 Add onetoHLand DE.

INC DE 13

DECB 05 Decrement B, the counter.

LD A, &00 3E, 00 Put 0 in the accumulator

CPB B8 Compare B with contents of the accumulator (0).

If B doesnot equal zero, jump back &F3 locations to load
next bytesinto registers. F3 is hex for two’s complement
of 13 (see page 37).

JR NZ to 4th instruction| 20, F3

RET C9 Return.

Filling in the data and addresses

addressesaandb If youwanttoswap the toptwo
lines of the screen with the next two lines, make
address a the first address of your computer’'s screen
memory. Address b is the address for block a plusthe
number of bytes to be swapped. Convert both
addressestohex.

n (number of charactersin
one block) To find n, multipl
"| the number of charactersin
aline by the number of lines
inone block. Convert to hex.

6502 screen flash

This program swaps the two blocks, byte by byte (i.e. character by character), starting
with the last byte in each block. It loads these bytes into the registers, then stores the byte
from block a in the screen location for block b and vice versa. Then the programis
repeated to swap the next pair of bytes.

HRFEREREEEREREREEREAREREEREEREERNER
EARREREFRERRARRAERERNFXRERBRREN R R

D000000000DDDD00DDODO0000D0D000D

starting address for each block. The
address for each byte. The total number of instruction DEX (decrement X) makes the

It uses indexed addressing to find the

computer subtract 1 from X so that, when
the program repeats, the computer fetches
the next byte back in the display.

bytesin one block isloaded into the X
register. Then, to store or load abyte, the
number in the X register isadded to the

6502 screen flash program

See the bottom of the opposite page for how to work out the values of n,aand b. Then
subtract 1 from a and b so that when the computer adds X it gets the last address ineach
block, rather than the first address of the next line. (Make sure n,aand bare inhex.)

Mnemonics Hex codes | Meaning

LDX #n AZn Load X with the number of bytes in one block.

LDA addressa, X BD addressa| Put contents of location with address a+X into accumulaior.
TAY A8 Transfer contents of accumulator to register Y.

LDA addresshb, X BD addressb| Putcontents of location with address b+X into accumulator.
STAaddressa, X 9D addressa| Store contents of accumulator at addressa+X.

TYA 98 Transfer contents of Y register back to accumulator.

STAaddressb, X 9D addressb| Store contents of accumulator at address b+X.

DEX CA Decrement X. Zero flag is set to 1 when X=0.

: : Branch back &EF locations if X is not equal to 0. EF is the
BiEtoinstnictiontwe | DOEF hex for two's complement of 17 (see page 37).

RTS 60 Return

Loading and running the program for the Z80 or 6502

The best way to run this programis asa 3. Next, add the following lines to the end
“machine code subroutine in the hex ofthe program:

loader, To dothis, follow these steps: 240 CALL address where machine

1. Typeinthehex loade{ and put the hex ;;gE;DE‘R f;‘i'" ?rdn LA

codes for your computer’s 260 NEXT K Change figure 500indelay
microprocessor in line 160. 270 GOTD 240 loop tosuit your computer.

2. Atline 180 youneed two loops to poke 4. Now type RUN to run the program. The
the characters for the display into the hexloader pokes the hex codes into the
screen memory. For example, here are memory, then pokes the display codes
the lines for two rows of *s (code 42) into the screen memory. Line 240 makes |
followed by two rows of 0s (code 48), fora goto the location where the machine ¢
computer with a 40 column screen. program is stored and carry outthe

instructions. By itself, the machine code

180 FOR J=0 TO 79 program only swaps the display once, so
190 FOKE first screen address + J.42 line 270 makes it call the program again
E?g gg?aiao T8, 159 and again to make a flashing effect. You
220 POKE first screen address + J.48 need the delayloop because the machine

230 NEXT J codeis so fast.

00

39

Going further

[f you want to find out more about machine code the best way is to try writing your
own short programs and to test and study programs written by other people. One
good way to use machine code isas a short subroutine to carry out a particular task
ina BASIC program. For instance, machine code is particularly suitable for sorting
data or filling the screen with graphics because it is faster and takes lessmemory
space than BASIC. You can find subroutines for doing things like this inmagazines.
If the subroutines are written specially for your computer you can run themwithout
alteration. If they are written for another make of computer which uses the same
microprocessor you will need to change any addresses in the program for
addresses in the area in your computer's memory that you have chosen tostore

machine code,

Machine code subroutines

Here are the steps you need to follow to use
amachine code subroutine ina BASIC
program,.

1. Make room in the memory for the
machine code by lowering the top of user
RAM (see pages 20-22).

2. Put the codes for the machine code
subroutine into line 160 of the hex loader
program on page 24. (Make sure thereisa
return instruction at the end of the machine
code program.) Add lines to poke inany
data bytesif necessary, then type in and run
the hex loader.)
3. Number your BASIC program using line
numbers starting after those used in the hex
loader. At the point where you want the
computer to carry out the machine code,
put your computer's command for running a
machine code program as aline inthe
BASIC program.

o
This tells the
computer to goto
location 16002 and
carry out the
instructions there.

4, Type the BASIC program into your
computer and then type RUN. The
computer will carry out the BASIC
instructions and when it reaches the line
telling it to run the machine code programit
will go to the address where the machine
code is stored and carry outthe
instructions. The return instruction at the
end of the machine code will send the

! | computer back to the next line inthe BASIC
program.

Using an assembler

Anassembler (a program which enables
youto type in a machine code programin
mnemonics) makes machine code
programming much easier. You can buy
an assembler on cassette for most home
computers and some, such as the BBC,
have a built-in assembler.

With an assembler you cantypein
comments alongside the mnemonics to
remind you what each line does. The
assembler will then display the program
on the screen in hex and mnemonics, with
the addresses where the instructions are
stored and the comments.

The assembler will automatically
reverse the pairs of digits in addresses
and work out the address or displacement
for ajump. Some assemblers allow youto
use symbolic names for data, like
variables in BASIC. A good assembler
also has a debugger to find mistakes and
an editor to help you correct them.

Suggested books

There are lots of books on machine code
specially written for one particular make of
microcomputer. The best way to choose
one is toread the reviews in computer
magazines. You may also find the following
books useful:

Programming the Z80 and Programming
the 6502, both by Rodney Zaks and
published by Sybex. These are very
detailed guides with complete lists of all the
instructions for each microprocessor. They
are not easy to read for beginners, but they
are useful for reference.

VIC 20 Programmer’s Reference Guide
published by Commodore.

6502 Machine Code for Beginnersby A. P.

Stephenson, Newnes Microcomputer Books.

Decimal/hex conversion charts

This chart converts hex numbers from 0 to FF to decimal and vice versa.

Hex to decimal
To convert a hex number to decimal read

Decimal to hex
To convert a decimal number to hex, find

along the row for the first hex digit inyourhex the decimal number inthe chart. Thenread
number and down the column for the second back along the row for the first hex digitand

hex digit. The number where the row and
column meet is the decimal equivalent for
your hex number, e.g. hex Al isdecimal 161.

up the column for the second hex digite.qg.
154is 9A.

Second hex digit

First hex digit

0 1 2 3 4 5 6

7 8 9 A B C D E F

240 | 241 | 242 | 243 | 244 | 245 | 246

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 i 18 19 20 21 22 23 24 | 25 26 27 28 29 30 31
2 32 | 33| 34| 35| 36 37 38 39 40 | 41 42 43 44 | 45| 46 | 47
3 48 | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 | 65 66 67 68 69 70 71 72 | 73 741 75 76 | 77 78 | 79
5 80 | 81 82 | 83 84 85 86 87 88 89 90 91 92 [93 94 95
6 96 [97 | 98 99 | 100 | 101 | 102 | 103 | 104 | 105 [106 | 107 | 108 [109 | 110 [111
7 |12 (113 | 114 [115 | 116 [117 | 118 [119 | 120 | 121 [122 | 123 | 124 | 125 | 126 | 127
8 [128 [129 | 130 | 131 | 132 [133 | 134 | 135 | 136 | 137 | 138 | 139 [140 | 141 | 142 | 143
9 | 144 [145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159
A | 160 [161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 [172 | 173 | 174 | 175
B | 176 | 177 | 178 | 179 | 180 | 181 [182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191
C | 192 [193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207
D | 208 | 209 | 270 [211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223

| E [224 [225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
F

247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255

Converting addresses

Touse the chart to convert hexaddresses,
look up the decimal equivalent for the first
pair of digits in the address. This is the page
number. Then look up the decimal

equivalent for the second pair of digits to
find the position on the page. Multiply the
page number by 256 and add the position
onthe page.

Two’s complement conversion chart

This chart gives the two's complement in
hex of decimal numbers from — 1 to —128.
To convert a number to two's complement,

find the number in the chart, thenread
along the row for the first hex digit and up
the column for the second digit.

Second hex digit

First hex digit

F E D c B A 9

8 7 6 5 4 3 2 1 0

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 2b 26 27 28 29 30 31 32

33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87

88 89 90 9 92 93 94 95 96

97 98 99 | 100 | 101 | 102 | 103

104 | 105 | 106 | 107 [108 | 109 | 110 | 111 | 112

o wp@EOOMm

M3 [114 | 115 | 116 | 117 | 118 | 119

120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128

Doing conversions on a calculator

When you do conversions on a calculator
the calculator displays the remainderasa
decimal number. For example, if youare
converting decimal 134 to hex you divide by
16 then convert the answer and remainder
to hex digits. A calculator would give you
the answer as 8.375.

To convert the remainder to a whole
number you subtract the number before the
decimal point, then multiply by the number
youdivided by.

8.376—-8=0.375X16=6

So 134 + 16 =8 remainder 6 therefore
decimal 134 is86 in hex.

41

Z80 mnemonics and hex codes

The mnemonics and hex codes for the instructions covered in this book are givenon
the next few pages. The term “implicit addressing” used in these lists is just the name
for instructions where no operand need be specified in the hex code. There area
few other instructions not listed here and if you want to go further with machine code
youwill need a complete list of the Z80 instruction set (see page 40). The following
abbreviations are used in these lists:

n =number
nn = two byte number
r =register

¥ = register pair
x = address

¢ = condition
d =displacement

JP (zz) Jump to address held in
register pair rr. (Implicit

LD A, (x) Load accumulator

. with contents of address x.

LDE,r Loadregister E with
the contents of registerr.

ADC A,n Addwithcarry,a
number, n, to the accumulator.
(Immediate addressing.)

CALL x Gotosubroutine

ADCA,n CE.,n

DECr Decrementregisterr.

BEDCA,x Addwithcarry,
register r to the accumulator.
(Implicit addressing.)

starting at address X (Implicit addressing.)
(Immediate addressing.) DECA 3D

CALLx CDx DECB 05
CALL¢,x Gotosubroutine DECC 0D
starting at address x DECD 15
depending on condition c. DECE 1D
cmay be Z (equal); NZ (not DECH 25
equal); C (carry); NC (no DECL 2D

| carry); PE (parity even); PO

(parity odd); M (minus) or P
(plus). (Immediate

DEC r¥ Decrement register
pair rr. (Implicit addressing.)

ADCAA 8F
ADCAB 88
ADCA,C 89
ADCAD 8A
ADCAE 8B
ADCAH 8C
ADCA,L 8D

ADCHL,xr Add withcarry,
the contents of register pair it
to HL. (Implicit addressing.)

addressing.) DECRBC 0B
CALLZ,x CCx DECDE 1B
CALLNZ,x C4,x DECHL 2B
CALLC,x DC.x DECIX DD2B
CALLNC,x D4,x DECIY FD2B

CALLPE,x EE%

CALLPO,x E4,x

ADCHL,BC ED4A

CALL M,x FC,x

ADCHL,DE EDSA

CALLP,x F4.x

ADCHL,HL EDBA

ADDA,n Addanumber,n,to
the accumulator, (Immediate
addressing.)

CCF Complement carry flag.
(Implicit addressing.)

ADD,n Cé,n

ADD A,r Addregisterrtothe
accumulator. (Implicit

DEC (HL) Decrement
contents of address held in HL.
(Indirect addressing.)

DEC (HL) 35

INCr Incrementregisterr.
(Implicit addressing.)

CCF 3F
INCA 3C
CPn Compare contents of INCB 04
accumulator with datan.
(Immediate addressing.) :mg g ?2
CPn FEn INCE 1C
-
CPr Compare contents of INCH 24
register r with the accumulator. INCL 2C

(Implicit addressing.)

addressing.)
ADD A A 87
ADDA,B 80
ADDA,C 81
ADDA,D 82
ADDAE 83
ADDA,H 84
ADDA,L 85

ADDHL,rr Addthe contents

of register pair rr to HL.

(Implicit addressing.)

CPA BF
CPB B3
CPC B9
CPD BA
CPE BB
CPH BC
CPL BD

ADDHL,BC 09

ADDHL,DE 19

CP (HL) Compare contents of
accumulator with contents of
address held in HL. (Indirect
addressing.)

INC rr Increment register pair
7. (Implicit addressing.)

INCBC 03
INCDE 13
INCHL 23

INC (HL) Increment contents
of address held in HL. (Indirect
addressing.)

INC (HL) 34

JPx Jumptoaddressx.
(Immediate addressing.)

ADDHLHL 29

CP(HL) BE

JPx C3x

addressing.) (Absolute addressing.) (Implicit addressing.)
JP(HL) E9 LD A, {x} 3A, (x) LDEA 5F
JP(IX) DDES LDEB 58
JP(IY) EDES LDrr,(x) Loadregister pairrr LDE.C 59
with contents of addresses x LDE,D B5A
JPex Jumptoaddressx andx+1. (Absolute LDEE 5B
depending on condition c. addressing.) LDEH 5C
c may be Z (equal); NZ (not
equal); C (carry); NC (o LD BC, (x) ED4B, (x) LDE,L 5D
carry); PE (parity even); PO LD DE, {x) ED5B, (x) LDH,x Load register Hwith
(parity odd); M (minus) or P LD HL, (x) 2A, (x) the contents of registerr.
i Implicit addressing.
;ﬂgﬁés(;;l; ;echate LD B,r Loadtheaccumulator ¢ LI; HA g_})
with contents of registerr. r
JPZ,x CA,x (Implicit addressing.) ::g :ag g?
JPNZ,x C2,x ;
JPC.x DA X DA 7k LDH,D 62
JPNC.x D2,x LbAB Li] LDH,E 63
JPPE,x EAX LDAL i LDH,H 64
JPPO,x E2,x tg - 8 LDH,L 65
JP M,x FAx LD A’H 7c LD L,r Loadregister L withihe
JPP.x F2,x D A’ L 7D contents of register r. (Implicit
_ - addressing.)
iﬁig};ﬂpdﬂzg;\éz}{g;gd LDB,r Load regis'ter B with LDL,A 6F
(Relative addressing.) the contents ofreglster I. LDL,B 68
(Implicit addressing.) LDL,C 69
g 154 LDB,A 47 LDL,D 6A
JRec,d Jumprelative. Jumpd LDB,B 40 A L
bytes (the displacement) LDB.C 41 LDLH 6C
depending on condition c. LDB,D 42 LDL.L 6D
cmay be NZ (not equal); Z LDB,E 43 LD, (rr) Loadregister r with
(equal); NC (no carry) or C LDB,H 44 contents of address held in
(carry). (Relative addressing.) LDB,L 45 register pair rr. (Indirect
JR Nz,d 20,d addressmg.)
JRZd 28,d LDC,r Load regis'teerith LDA, (BC) 0A
JRNCA 30.d the contents ofret__:nster : LD A,(DE) 1A
IR C,dr 38:d (Implicit addressing.) LDA,(HL) 7E
LDC,A 4F LD B,(HL) 46
LDrn Loadregister r with LDC,B 48 LD C,(HL) 4E
datan. (I'mrnediate LDC,C 49 LDD,(HL) 56
addressing.) LDC,D 4A LDE,(HL) 5E
LD AN 3E,n LDC,E 4B LDH,(HL) 66
LDB,n 06,n LDC,H 4c LDL,(HL) 6E
LDC.n 0E,n LDC,L 4D LD (x),A Storethe contents of
LDD,n 16,n] i the accumulator in address X.
LDE,n 1E,n LDD,r Loadregister Dwith || (apsolute addressing.)
LD H,n 26.n the contents of registerr.
LDLn %En (Implicit addressing.) LD {x},A 32,x
LDD,A 57 LD (x),rr Store the contents of
LDrr,nn Loadregister pairrr LDD,B 50 register pair It at addresses x
with two byte num.bq nn. [DD.C 51 and x+ 1_. (Absolute
(Immediate addressing.) LDD.D 52 addressing.)
LDBC,nn 01,nn LDD,E 53 LD (x),BC EDA43,x
LD DE,nn 11,nn LDD,H 54 LD (x),DE ED53,x
LD HL,nn 21,nn LDD,L 55 LD (x),HL 22,x

43

LD (HL),A 7

LD (xz),x Storethe contents of RETC D8 SBC A,(HL) Subtract with
registerr at the address held in RETNC DO carry the contents of address
register pair rr. (Indirect RETPE E8 held in register pair HL, from
addressing.) RET PO EO the accumulator. (Indirect
LD (BC),A 02 RETM F8 addressing).
LD (DE),A 12 RETP FO SBCA,(HL) 9E

LD (HL),B 70

LD (HL),C 71

LD (HL),D 72

SBC A,n Subtract with carry
data n from the accumulator.
(Immediate addressing.)

SCF Set carry flag. (Implicit
addressing.)

SCF 37

LD (HL),E 73

LD (HL),H 74

SBCAn

DE,n

LD (HL),L 75

LD (xr),n Storedatanat

SBC A,r Subtract with carry
contents of registerr fromthe
accumulator. (Implicit

SUBn Subtractdatanfromthe
accumulator. (Immediate
addressing.)

SUB,n D6, n

6502 mnemonics and hex codes

This chart shows the mnemonics and hex codes for all the instructions (plus afew
more) covered in this book. The mnemonic instructions are given down the leftand
the hex codes for each instruction in the different addressing modes are shown
across the chart. Zero page addressing is just like absolute addressing, i.e. the
operand is the address where the data is stored, but the address must be inpage
zero (1L.e. locations 0-255) of the memory (see page 10). Implied addressing is justthe
term used to describe instructions where no operand need be specified, e.g. CLC.
There are a number of other instructions not given here, and if you want to gofurther
with machine code you will need to get a complete list of the 6502 instructionset.

SUBr Subtract contents of
register r fromthe
accumulator. (Immediate
addressing.)

ccanbe Z (equal); NZ (not
equal); C(carry); NC (no
carry); PE (parity even); PO

address held in register pairr. addressing.)
(Immediate/indirect
addressing.) SBCAA 9F
LD (HL),n 36 SBCA,B 98
SBCA,C 99
RET Returnfrom subroutine. SBCAD aA
(Indirect addressing.) SBCAE 9B
RET C9 SBCAH ac
RET ¢ Return from subroutine SBCAL 9D
depending on condition c.

SBC HL,xv Subtract with carry
contents of register pair it from
register pair HL. (Implicit

SUBA 97
SUBB 90
SUBC 91
SUBD 92
SUBE 93
SUBH 94
SUBL 95

SUB(HL) Subtractthe

(parity odd); P (plus); M addressing.) contents of address held in HL
(minus). (Indirect addressing.) SBCHL,BC ED42 from the.accumulator. (Indirect
RETZ cs SBCHLDE ED52 addressing.)
RET NZ Co SBCHL,HL ED62 SUB(HL) 96
Puzzle answers Tip: an easy way to work out the two's
Page 11 complement of a number is to subtract it

&ATindecimalis 167. 513 in hexis &201.

from 256, then convert the answer to hex.

Page26 _ E.g. 256—6=250 whichis FA in hex.
1.25+173 (28is &19and 73 is &49) i, T
Z80 6502 - g
Mnemonics Hex codes Mnemonics Hex codes Meaning
LD A, &19 3E,19 LDA #&19 A919 Put &19 in accumulator.
ADDA, &49 C6,49 ADC #8&49 6949 Add &49 to accumulator.
Store contents of
LD (address),A | 32,address STA address 8D address agg‘;mﬂamr atacertain
a ess.
RET C9 RTS 60 Return
2.64+12+14 (64 is &40, 12is &0C and 14 is &0E)
Z80 6502 Meani
Mnemonics Hex codes Mnemonics Hex codes eaning
LD A, &40 3E,40 LDA #&40 A940 Put &40 in accurnulator.
ADDA, &0C C6,0C ADC #8&0C 690C Add &0C to accumulator.
ADDA, &OE C6,0E ADC #&0E 69 0E Add &0E to accumulator.
Store contents of
LD(address), A 32, address STA address | 8D address aggx;mulator ata certain
a ©s8S.
RET C9 RTS 60 Return

Puzzle answers continued on page 48.

;%’ o o x >
Addressing mode 5 s & 3 @ o =
£ g o 3 3 3 =
E < g | E g | E| 2
. Data |Any Address |Address | Address | None | Displace-
Operandis address |inpage [+X +Y ment
zero register |register
BDC Add withcarry,i.e. add a byte, plus the 69 6D 65 7D 79
carry flag, to the accumulator. =
BCC Branchif carry clear. Note that notall the instructionscan /90
BCS Branchif carry set. __Ie= beusedin all the addressing modes.) B0
BEQ Branchifequal. FO
BMI Branch if minus. O 30
BNE Branchifnotequal. Do
BPL Branchifplus. X 10
BVC Branchif overflow clear. 50
BVS Branchif overflow set. 70
CLC Clearcarry flag. 18
CMP Compare withthe accumulator. C9 CD Cb DD D9
CPX Compare withregister X. EO EC E4
CPY Compare withregister Y. Co CcC Cc4a
DEC Decrement (subtract 1 from) memory CE Cé DE
location.
DEX Decrement (subtract 1 from) X register. CA
DEY Decrement (subtract 1 from) Y register. 88
INC Increment (add 1 to) memory location. EE E6 FE
INX Increment(add 1to) X register. E8
INY Increment(add 1to) Y register. C8
JMP Jump to address specified in operand. 4c
JSR Jump to subroutine starting at address 20
specified in operand.
LDA Load accumulator. A9 AD Ab BD B9
LDX Load Xregister. A2 AE AB BE
LDY Load Y register. A0 AC A4 BC
RTS Return from subroutine. 60
SBC Subtract with carry. Subtract from the E9 ED Eb FD Fa
accumulator and borrow from the carry flag.
SEC Setcarry flag. 38
STA Store accumulator at a certain address. 8D . 85 9D 99
STX Store X register ata certain address. 8E 86
STY Store Y register ata certain address. 8C 84
TAX Transfer accumulator to X register. AA
TAY Transfer accumulator to Y register. A8
TXA Transfer X register to accumulator. BA
TYA Transfer Y register to accumulator. o8

45

Machine code words

Hash sign. This is the sign used onsome
computers to indicate hex numbers. For the
6502 microprocessor it is used toindicatea
piece of data.

& Ampersand sign. This is another sign
used to indicate hex numbers.

Absolute address. The actual addressofa
piece of data.

Absolute addressing. Anaddressing
mode in which the instruction contains the
address of the data. Also called extended
or direct addressing.

Bccumulator, The register where bytes of
information on which arithmetical or logical
operations are to be carried out, are held.
Address. Anumberused toidentifya
location in the computer's memory.
Addressing modes. The various waysin
which you can tell the computer where to
find the data to work on in a machine code
program.

Arithmetic logic unit (ALU). Thearea
inside the CPU where arithmetical and
logical operations are carried out.
Assembler. A program which converts
instructions written in assembly language
mnemonics into the computer’s own code.
Assembly language. A method of
programming the computer using letter
codes, called mnemonics, to represent
machine code instructions.

Binary. Anumber system with two digits, 0
and 1 and in which each digit in anumber
has twice the value of the digit on its right.
Bit. A single unit of computer code,i.e.al
or 0 representing a pulse or no-pulse signal.
Buffer. Atemporary storage areainthe
computer’'s memory where data is held on
its way to or from its final destination.
Branch. Aninstructiontellingthe
computer to jump to another line ina
prograrm.

Byte. A group of eight pulse and no-pulse
signals (or “bits”) which represents a piece
of information in computer code.

Carry flag. A bitinthe flags register which
issetto 1 when the result of an addition will
not fit into eight bits.

Clear. Tomake abit, e.g. one of the bitsin
the flags register, zero.

Complement. Also called “flipping the
bits" this is the process of changing all the
Osinabyteto 1 and all the 1sto0.

Conditional branch. Aninstruction which
tells the computer to jump to another line in

the program depending on the result of a test.

Direct addressing. See absolute
addressing.

Disassembler. A program which can
display the contents of a series of memory
locations on the screen inassembly
language. You can buy a disassembler on
cassette and it is useful for debugging
machine code programs and for examining
the programs in your computer's ROM.
Displacement. A number used inajump
or branch instruction to tell the computer
how many locations to jump to find the next
instruction. Also called an offset.

Flag. Abitinthe flagsregister whichis
used to indicate a certain condition, e.g. the
presence of a negative number, or ofa
carry over in an addition.

Hexadecimal, or hex. A number system
which uses 16 digits (the numbers 0-9 and
letters A-F). Each digit in a hex number has
16 times the value of the digit on its right.
Hexloader. A BASIC program which
converts the hex codes of a machine code
program into decimal numbers and pokes
theminto the computer's memory.

High order byte. The first two digitsina
hex address which represent the number of
the page in the memory where the address
is. Also, the two digits which show how
many 256s there are in a number larger than
255.

HIMEM. The highest addressinuser RAM.
Immediate addressing. Anaddressing
mode in which the data for an instruction is
included in the instruction.

Implicit addressing. Anaddressing mode
in which the operand is understood and
need not be specified.

Implied addressing. Same asimplicit, see
above.

Indexed addressing. Anaddressing
mode in which the contents of anindex
register are added to the address givenin
the instruction to work out the actual
address of the data.

Index registers. The registersusedin
indexed addressing and also, in the 6502, as
general purpose registers.

Indirect addressing. Anaddressing
mode in which the operand isused asa

pointer to the data. The operand may be an
address or, in the Z80, a pair or registers,
and it holds the address of the data.
Instruction. Anoperation tobe carried out
by the central processing unit.
Interpreter. A program which translates
instructions in BASIC (or other high level
language) into the computer’s own code.
Instruction set. Allthe operations which
can be carried out by a particular
MiCrOProcessor.

Jump. Aninstruction which tells the
computer to go to another line in the
program.

LIFO. Thisstands for “last in/first out” and
describes the method used by the
computer to store information in the stack.
Low order byte. Thetwo hexdigitsinan
address which give the position of that
address within a page of memory. Also, the
two hex digits which show the number of
units in a number larger than 255.
Microprocessor. The chip which contains
the computer’'s CPU and which carries out
program instructions and controls all the
other activities inside the computer.
Mnemonic. Aletter code usedin
assembly language to represent an
instruction in the computer's own code. The
word mnemonic (pronounced nemonic)
means “to aid the memory” and assembly
language mnemonics sound like the
instructions they represent.

Object code. A programwhich hasbeen
translated into machine code from
assembly language or another high level
language.

Offset. Seedisplacement.

Opcode. The part of an instruction which
tells a computer what to do.

Operand. The part of an instruction which
tells the computer where to find the datato
work on.

Operating system. A group of programs
written in machine code and stored in the
computer's ROM, which tell it how to carry
out all the tasks it has to do.

Page. A subdivision of memory. On most
home computers a page is 256 locations.
Pointer. A memory location (or pair of
registers) which contains the addressofa
piece of data.

Pop. Toremove anitem stored in the stack.

Processor status register. This is the 6502
name for the flags register (the register
where each bitis used to record a certain

conditioninside the computer).

Program counter. The register which
contains the address of the next instruction
to be fetched from the memory.

Pull. Same as pop, i.e. toremove anitem
from the stack.

Push. Toplace anitem inthe stack.
RAMTOP. The highest address inuser
RAM.

Registers. The placesinthe CPUwhere
bytes of instructions, data and addresses
are held while the computer works onthem.
Relative addressing. Anaddressing
mode in which the computer works out the
address of the next instruction by addinga
number called the displacement or offset,
to the address in the program counter.
Screen memory. Thelocationsin RAM
which are used to hold information tobe
displayed on the screen.

Sign flag. The bit in the flags register
which is used to indicate negative and
positive numbers.

Source code. A program writtenin
assembly language, or other high level
language such as BASIC.

Stack. Anarea ofthe memory used by the
computer for temporary storage and where
the last itemn stored is always the first tobe
retrieved.

Stack pointer. A registerinthe CPUwhich
contains the address of the last item in the
stack.

Systems variables. Memory locations in
RAM which hold information about the
current state of the computer.

Top of memory. The highestaddressin
user RAM.

Two’s complement. A system of notation
used to represent negative numbers. To
find the two's complement of a number you
complement (make all the lsintoOsand all
the Os into 1s) the binary for that number and
thenadd 1.

User RAM. The part of RAM where BASIC
programs are stored.

Zero flag. The bitinthe flags register
which indicates when the result of an
operation is 0 and is also used to show when
two bytes are equal.

Zero page. The first 256 locations inthe
memory. !

Zero page addressing. Used onlyonthe
6502, this is an addressing mode in which
the operand is an address in page zero of
the memory (i.e. from 0-255). 47

48

Puzzle answers continued Decimal Hex

Page 28 High order | Low order | High order | Low order

00011010 is 26 decimal. 307 1 51 &01 &33

11111011is251 decimal. 21214 82 222 &82 &DE

10101010is 170 decimal. 759 2 247 802 &F7
1023 3 255 &03 &FF

Page 31

To adapt the program on page 27 for

answers greater than 255 youneed todelete command:

given below. To see the result you use this

the return instruction and add the lines PRINT PEEK(address 3)+~PEEK(address4)*256.
Z380 6502 .
Mnemonics Hex codes Mnemonics Hex codes Meaning
LD A, &00 3E,00 LDA #&00 A900 Put 0 inaccurmulator.

ADC A, &00 CE,00 ADC #&00 6900 P
LD(address4),A | 32 address4 | STAaddress4 | 8Daddress4 B s iducansll
RET C9 RTS 60 Return.

Page 31

Hex for the two's complement of 12 is &F4; 18is &EE and 91is &F7.

Index
& ampersand sign, 8, 12, 16, 18, 46
hashsign, 12, 18, 18, 46
absolute addressing, 18, 27, 46
accumulator, 14-185, 17, 30, 32, 46
address, 8-9, 11, 19, 46
converting to hex or decimal, 11
inmachine code, 18-19
addressing modes, 27, 46
ALU (arithmetic/logic unit), 13, 14, 46
ASCII code, 13, 24, 32
assembler, 5, 16, 40, 46
assembly language, 5, 17, 19, 46
Atari, 3, 24
BASIC, 4, 12,20, 40
big numbers, 28, 30-32
binary,
code, 4, 5, 16
numbers, 4, 19, 28, 46
to hex conversion, 37
bit, 4, 46
branch, 34, 35, 46
buffers, 10, 46
byte, 4, 13, 19, 20, 46
carry flag, 14, 15, 17, 29, 30, 31, 36, 46
caérgying over numbers in addition, 29,
- 31
character codes, 13, 32
clear, to, 29, 46
Commeodore 64, 3,7
comparing, 32
complement, 46
conditional branches, 35, 36-31, 46
control unit, 13, 14
CPU (central processing unit), 7,
14-15, 16, 19
crash, 20
databytes, 23, 28
decimal numbers, 11, 41
decrement, 36, 38
direct addressing, 27, 46
disassembler, 46
displacement, 36-37, 46
display file, 8
extended addressing, 27
flags register, 14-15, 17, 29, 36
hex,
codes, 16, 18, 19
converting to decimal, 11, 41

dump, 19
loader, 5, 23, 24, 25, 46
number system, 5, 8, 11, 46
high order byte, 19, 28, 30, 31,46
HIMEM, 8, 20, 21, 46
immediate addressing, 18, 27, 33, 46
implicit addressing, 46
implied addressing, 46
increment, 33, 34, 38
indexed addressing, 34, 39, 46
index registers, 14-15, 46
indirect addressing (280), 33, 38, 46
instruction, 4, 5, 13-14, 16, 47
instruction set, 16, 47
interpreter, 4, 8, 20, 47
jumps, 33, 35,47
LIFO, 10, 47
locations, memory, 8-9, 10, 11, 12-13
lowering RAMTOP, 21
low order byte, 19, 28, 30-31, 47
machine code,
checklist, 26
length of program, 20
subroutines, 39, 40
where to store in memory, 20-22
memory, 8-9, 10, 12-13
memory map, 8
microprocessor, 7, 16, 47
mnemonics, 5, 16-17, 47
object code, 18, 47
offset, 36-37, 47
opcode, 186, 18, 18, 47
operand, 16, 18, 27, 47
operating system, 8, 10, 11, 13, 20, 47
Oric micro, 3,7, 21
overflow bit, 36
page (of memory), 10, 11, 19, 21, 47
parity/overflow bit, 36
PEEK, 12-13, 21, 26, 31
pointer, 33, 47
POKE, 12-13,23
pop, 35,47
position on page (of address), 11, 19,
21
processor status register, 15, 29, 47
(see also flags register)
program counter, 14-15, 35, 47

RAM (random access memory), 6, 12,

13, 20-21
RAMTOP, 8, 20, 21, 47
lowering, 20-22
registers, 13-14, 27, 30, 31, 47
relative addressing, 36, 47
REM statement, storing machine
codein, 22
reserved for use of the operating
system, 8, 10
return instruction, 23, 35
ROM (read only memory), 6, 12, 13
running a machine code program, 25
screen memory, 8, 13, 47
set, to, 29
sign flag, 14, 36, 47
source code, 18, 47
Spectrum, 13, 24, 32
stack, 10, 14, 15, 20, 35, 47
stack pointer, 14-15, 4T
subroutines, 35
systems variables, 10, 20, 21,47
Timex 1000, 9, 13, 22, 24
Timex 2000, 13, 24, 32
top of memory, 20, 21, 47
two's complement, 37, 41, 47
user RAM, 8, 20, 47
VIC 20,7, 13,22
zero flag, 32, 33, 34, 36, 47
zero page, 10, 45,47
zero page addressing, 45, 47
ZX81,9, 13,22, 24

Hex loader conversions
Change these lines for the ZX81
(Timex 1000):

40 INFUT H$

70 LET X=
(CODE (H%$) —28) #1646
80 Delete

90 LET ¥Y=CODE
(H$ (2 TO)»)-28
100 LET X=X+Y
110 Delete
55 Delete
1460 Delete
Change this line for Atari computers:

90 LET ¥Y=ASC{AE(Z))

Other Usborne Books

Thereare l}u.nd.reds of colourful Usborne books for all ages on a wide range of
subjects. Titles which may be of particular interest to you are:

—USBORNE NEW TECHNOLDGY —,

B e et N

e J
-~

This exciting new series takes a serious look at what is happening now in the world of new
technology. Many people thmk that such things as lasers, robots, databases and interactive TV
belong only to the world of science fiction but, as these brilliantly illustrated books show, many of
them are already in use and affecting our everyday lives. The books take a straightforward approach
to these apparently difficult subjects, making them easy for everyone to understand.

Page size: 240 X 170 mm 48 pages

Ushorne Guide to

__)1% B

TV & VIDEO| PR
— P g <

i~ A

- R .|

3 ot

Usbrne Ekectronc Wokd

r“ml\'n-n.

e

T
witken
—
Usborne Electronic Workl

el

This up-to-the-minute series on electronic technology explores the worlds of computers, TV and
video,. audio and radio and, in a new title, films and special effects. In a clear visual way, the books
describe the very latest equipment and show what it does and how it works. They also explain much
of the confusing technical jargon which usually surrounds these subjects. There are fascinating
sections on what computers can do for us and how they do it, how TV and video cameras can turnan
ordinary scene into a pattern of electronic signals that can be stored on tape, and how arecording
studio works. Audio & Radio also contains instructions for building a simple radio.

Page size: 276 X 216 mm 32 pages

| — Usborne Computer Books

Usborne Computer Books are colourful, straightforward and easy-to-
understand guides to the world of home computing for beginners of allages.

i . Usborne Guide to Computers A colourful introduction to the world of
computers. “Without question the best general introduction to computing | have
everseen.””Personal Computer World

Understanding the Micro A beginner’s guide to microcomputers, how to use
them and how they work. “This introduction to the subject seems to get
everything right.” Guardian

Computer Programming Asimpleintroductionto BASIC forabsolute
beginners. “... lucid and entertaining ...”’Guardian

Computer and Video Games All about electronic games and how they work,
with expert’s tips on how to win. “The ideal book to convert the arcade games
freak to real computing.” Computing Today

Computer Spacegames, Computer Battlegames ListingstorunontheZX81,
‘Spectrum, BBC, TRS-80, Apple, VIC 20 and PET. “Highly recommendedto
anyone ofany age.” Computing Today

Practical Things to do with a Microcomputer Lotsof programstorunanda
robot to build which will work with most micros.

ComputerJargon Anillustrated guide to all thejargon.

Computer Graphics Superblyillustrated introduction to computer graphics
| with programs and a graphics conversion chart for most micros.

Write Your Own Adventure Programs Step-by-step guide to writing adventure
games programs, with lots of expert’stips.

Machine Code for Beginners A really simple introductionto machine code for
the Z80 and 6502.

| Better BASIC A beginner’s guide to writing programs in BASIC.

Inside the Chip Asimple and colourful account of how the chip works and what
itcando.

| +001-99
| ISBN 0-8L020-735-8

T 00199
!
|
|

7808607207351

ISBN 0860207358 £1.99

