October 30, 1985

SFGO5 Music BIOS

Reference Manual

v2.0

September, 11, 1985

Nippon Gakki Co.,
Software Development

Scanned by abuur, converted to PDF by HansO, 2009

October 30, 1985

INTRODUCTION

This reference manual is intended to explain the utilization of the “SFG-05"

Control Program version 2.0" which resides within the internal 32Kbyte
ROM of the "SFG-05". L o
All the explanations for the chord-key function, auto-bass function, and

auto-rhythm functions are eliminated in this manual,
If these functions are to be used, refer to SFG-01 MBIOS manual.

.

wmtfawmm
WA b L =

October 30, 1985

TABLE OF CONTENTS

Chapter 1 Outline

1-1 Program Configuration

1-2 Design Concept

1-3 Hardware Configuration

1-4 Interface with MSX BASIC

1-5 Versions

Chapter 11 Basic Functions

2-1 Instrument, Queue, and Keyboard
2-2 Performance Parameters using general ins_u'ument
2-3 Voice Library

2-4 Important Voicing Parameters
2-5 Recording and Playback

2-6 (CSM Vocal Synthesis

Chapter 111 M-BIOS Interface

User Interface

Memory Management

Direct access to MIDB and 1DB
IRQ Processing via UISV
AST(Asynchronous System Trap)
Supervisor Call

Chapter 1V M-BI10S Syntax
4-1 1-Call

4-2 R-Call

4-3 K-Call

4-4 P-Call

4-5 S-Call

4-6 M-Call

4-7 F-Call

4-8 BDOS-Call

4-9 AST

4-10 UISV trap

Appendix

SFG-0: MBI0S _
Supplementary Reference

October 30, 1985

October 30, 1985

CHAPTER1 Outline

October 30, 1985

1-1 Program Configuration

IThe basic configuration of this program (SFG-05 Control Program)
follows that depicted in the following figure.

The M-B10S (Music Bios) controls the hardware of the SFG-05.

As a tool box, it provides the user various basic 1/0 modules
(MBI0S) and utilities required for instrumental sound sysnthesis
and music processing.

With the use of MBIOS modules, parameter handling for sound
synthesis and computer music performance can be carried out
without any necessity for the user to directly access the hardware
of the SFG-05.

Additionally, MBIOS includes several built-in utilities. If used,
these will provide convenient suppiementary services to the user
that would otherwise have to be programmed by the user.

These utilities are:

1) Reocording of performance and playback

2) Loading/saving of voice/automatic performance data
onto CMT(Cassette Magnetic Tape recorder)

3) BDOS call entry(with the provision of IRQ handling and
slot management)

In SFG-05, MBIOS functions can be invoked under three operating
modes. They are operating mode 1.0, 1.1, and 2.0.

Operating mode 1.0 is compatible to MBIOS of SFG-01. That is, all
the MBIOS functions work using fixed address working area under
the interrupt mode 1. Bugs found in SFG-01 are now corrected in
operating mode 1.0.

In operating model.1, the base address of MBIOS working area can
be allocated anywhere in available RAM. This enables MBIOS to
run under disk environment. However, in the operating mode
1.1, interrupt mode of Z80 is still assumed 1o be under model.

In operating mode 2.0, the base address to MBIOS work is not only
relocatable, but interrupt mode is also assumed to be under mode2.
This allows disk access and the fast interrupt handling of MIDI

October 30, 1985

caused by SFG-05 cartridge. For fast MIDI data handling, FIFO
buffer handling for transmitter and receiver function is now added
to the operating mode 2.0.

The M-Monitor (Music Monitor) is a demonstration program that
converts the MSX computer into a synthesizer, and will operate on
MBIOS. M-Monitor can be invoked from BASIC, by issuing "CALL
MUSIC".

The M-Monitor can be invoked either from the operating mode 1.0
or from the operating mode 2.0, respectively from the different
entry.

If called as M-Monitor 1.0, it will not support disk functions.

User Application New
Programs M-MOnitor
: |
MBIOS 1.0 MBIOS 1.1 I MBIOS 2.0
FIXED RELOCATABLE
WORK WORK
IRQ- MODE 1 | 1ra-MoDE 2

FIG 1.1 MBIOS CONFIGURATION

October 16, 1985

1-3 Hardware Configuration

The configuration of the hardware is shown in the following figure.

The MSX main unit and the SFG-05 are connected l.ogether by the
60-pin cartridge bus.

S0 pins out of the 60-pins form the standard MSX bus, and the
remaining 10 pins are not in use in the SFG-03.

Additionally, the right channel of the SFG-05 is equipped with a
low pass filter with a cut-off frequency around 3.5 KHz

The filter is enabled when CSM vocal synthesis is invoked, for CSM
vocal synthesis is carried out only on the right channel.

TOCPU BUS

Q 'ZI
— L-0uT
A o
BUS _ _ — oPM [o =i B4 ©
#YM2151 2YM3012
- i BA. @
INT T R-0UT
L L
20 PIN
UT-OFF FRQ.
SFFO-3FF1 - CONNECTER
MUSIC KEYBOARD SCANNING
T - >
MBIOS MKS) o
_— ROM MIDI QUT _
ADDRESS 32K FYM2Z148
AND BYTES MIDI IN _
cu:LgclL ROM "
SELECT
MIDI
— DECORDER > Lok
SELECT
3FFO-3FF7
] ™Mope
A 2

FIG. 1.2. HARDWARE CONFIGURATION OF SFG-05

October 16, 1985

1-4 Interface With MSX-BASIC

[Header]

The first 16 bytes starting from Address 4000h of MBIOS is a
header to enable the MSX-BASIC to jump to the Music-Monitor
of MBIOS.

4000h (ID) "AB"
4002h (INIT) Address of RETURN instruction
4004h (STATEMENT) Address of "CALL MUSIC"
4006h (DEVICE) 0000h
4008h 0000h
400Ah and up 0000h

[VDP reseting]

During CSM vocal synthesis and in the operating mode 2.0,
IRQ from VDP is reset directly.

[PLAY queue-buffer usage]

MBIOS uses PLAY-queue buffer area as an indirect addressing

pointer buffer. '

Therefore when MBIOS is active, MBIOS alters the PLAY-hook

so as the PLAY-queue buffer not to be referenced accidentally
by BASIC's PLAY routine.

PLAY-queue bulfer usage is:

MBIOS ---- F975h - F9F4h
M-MONITOR ---- F9FSh - FAF4h

October 16, 1985

1-4 Interface With MSX-BASIC

[Header]

The first 16 bytes starting from Address 4000h of MBIOS is a
header to enable the MSX-BASIC to jump to the Music-Monitor
of MBIOS.

4000h (ID) “"AB”
4002h (INIT) Address of RETURN instruction
4004h (STATEMENT) Address of "CALL MUSIC
4006h (DEVICE) 0000h
4008h 0000h
400Ah and up 0000h

[VDP reseting]

During CSM vocal synthesis and in the operating mode 2.0,
IRQ from VDP is reset directly.

[PLAY queue-buffer usagel

MBIOS uses PLAY-queue buffer area as an indirect addressing

pointer buffer. '

Therefore when MBIOS is active, MBIOS alters the PLAY-hook

s0 as the PLAY-queue buffer not to be referenced accidentally
by BASIC's PLAY routine.

PLAY-queue buffer usage is:

MBIOS ---= F975h - F9F4h
M-MONITOR ---- F9FSh - FAF4h

1-5 Versions

October 16, 1985

This program contains a 9 byte version code [rom address 0080h.

0080h:
0086h:
0087h:
0088h:

“MCHFMO0"
08h
00h
10h

Program ID code
ROM serial #

FM sound chip type
software version #

For the identification of either SFG-01 or SFG-05, it is only
necessary to look for the first 6 byte code "MCHFMO" from address

0080h.

However, the contents of address 0088h provide the information

for the type of SFG.
For SFG-01, (0088h)=00h - OFh:

for SFG-05, (0088h)=10h and up.

October 16, 1985

Chapter 11 Basic Functions

October 16, 1985

2-1 Instrument, Queue, and Keyboard

The Instrument, queue, and keyboard form the [undamental
steucture of M-BIOS.

The following illustration depicts the relationship of these three
main functional units.

{Instrument)

Instrument is depicted at the rightmost portion of the figure.

The instrument is meant to be an event processing system.

It processes the incoming event requests (0 realize the musical
performance such as playing melody.

The instrument is defined by a control block called IDB
(Instrument Definition Block).

There are up to 8 instruments that can be defined with IDB with
IDB#0 to IDB*7.

Each IDB can be assigned with | to 8 cahnnel resources of FM
sound LSI. Channel assignement is dynamically performed for
each instrument by MBIOS. This way, as long as total channel
resources of FM LSI does not exceed the maxumum of 8, the user
of the MBIQS can define as many as 8 different instruments with
any number of channels (between | and 8) linked up with each
instrument. -

(Queue)

In the middle ofthe figure, Queue is depicted.

This functional module acts as processing buffer between input
(events) and the next functional module, called Instruments.

There are 8 queues that can be used by the instruments.

Queues are numbered from QU#0 10 QU#7.

{Keyboard)

In the figure, the keyboard is an input to the music processing
system. It issues key-on/ofl requests and associated velocity
inputs. Since the requests are time dependent, they are called
events.

MK a mnsgic kevhnard attached tn SFG-NS unit is one of the

October 16, 1985

keyboards.

Any automatic performance process provided by the user could
also be categorized as a keyboard since it issues events to the
system as well.

[KEYBOARD]

MK

[QUEUE]

[INSTRUMENT]

10B#0

EYENT
GENERATOR

Qu~* 0-7?

10B#1

IDB#7?

December 3, 1985

[TDB and Event]

Related SV-calls:

$-00 define IDB
S-09 assign channel

- S-0A assign 1DB to queue and/or MIDI channel
S-0B All-Note-Off by IDB
5-12 define play-mode
R-00 Damp (issue All-Note-Off to all queues and

damp all the currently engaged voices to

channels)
R-01 Ali-Note-Off by queue
R-02 set event into queue
P play

{(Event}

The instrument is the most important functional unit in MBIOS.

It is defined by a 128 byte control block called IDB. Service call
S-00 is used to define IDB.

The IDB contains the information of the run-time parameters for
the performance, as well as the preset data for the FM sound chip.
The IDB should also be assigned with the channels usage of the FM
sound LSI. This is done by 5-09.

Input to IDB is event data. The event buffer called queue, should
be linked to the IDB. To do this, S-0A call is used.

The event data is fed to the queue in the form of argument to R-02
service call (All-Note-Off event is however issued as the service
call R-01). The events are then retrieved and processed by the
P-Call from the single linked Queue to the IDB.

There are three events: Note-on, Note-off, and All-Note- off.
Note-on and Note-off are each comprised of 2 bytes of data.

October 30, 1985

15 876543210
NOTEON [1] kc*] " wiLoomy |

15 8796 543210
NOTEOFF [o] _ kt* —— ToJoJo[o[olo]o]0]
ALL NOTE OFF (MO DATA)

KC#(Keycode number) indicates an 8-octave range, with the note
name being represented by the lower 4 bits, and the octave by the
upper 3 bits. This KC# format is internal to SFG-05 as shown in the
following.

76 543210

ke [0JocTave uoTe hare]

«Oh:C* <8l G
<lh> D <Oh» G*
<22h: D*® <dhe A

<3h - <Bh> -
<4h> E «Ch: 4=
<Sh» F <Dh> B
> F* <kl C
«7he - <Fh» -

{Event output to MIDI}

When the events are transmitted from MIDI interface, they are
packed into the standard MIDI message format with MIDI
destination channel number, MIDI-KC*, and MIDI-velocity.

They are as following:

October 30, 1985

WOTE-DH 7 6 543 210

ofoli] o=
MKC*
MYELOCITY

-

Lo

[=]

NOTE-OFF 76 5 43 210

tlololo] o=
0 MKC*
oj1]ofojofojolo

ALL-HOTE-OFF 6 543210

~1

ol1]1] Mo #
oji1]clojolojolo
glolojofolalclo
1lojt]{t] Mol #
AR LEE
ololololofo (oo

Where MIDI# is a destination MIDI channel.

MIDI#=0 - 15 for midi channel # 1 to 16 ,respectively.

MKC#* and MVelocity stand for KC¥ and Velocity in MIDI format,
respectively. .

{difference between MBIOS event format and MIDI format}

User is advised to note the difference between MBIOS event format
and MIDI data format.

While the SFG-05 internal KC¥ looks as shown before, the MIDI KC#
is a linearly arranged number, with 00h being the lowest note
and 7fh the highest note. '

Some examples between internal format and that of MIDI are
depicted here:

Note Internal KC* . MIDI format KC#
I 00h 0Dh '

20

October 30, 1985

A4 . 4Ah 45h
c7 7Eh 6Ch

Also observe that MBIOS velocity is different from MIDI velocity
format.

The SFG-035 internal velocity code covers an 8-bit range between
00h (Minimum) and FFh (Mazimum).

MIDI velocity can be derived from MBIOS velocity format by
dividing it by 2.

(channel assignemnet)

In event processing of IDB's, users are advised to note the
following consideration.

MBIOS performes special processing when channels alloted to the
IDB are all in use and still there is a request 10 the channel of that
IDB.

That is, the FM sound generator IC has 8 channels (8 notes), out of
which as many as desired up to the maximum of 8 channels can be
allocated to IDB. However, when the request for note-on events
exceed the available channels declared in IDB, the processing will
differ depending on whether only one channel is being used, or if
two or more channels are being used.

1) When only one channel is being used, and if the second note-on
request is issved while the first note is still on, then the second
note-on is granted, stopping the first note and pushing it into the
stack.

Then, the note-off of the second key will enable the first key to be
popped back and keyed on again(two level stacking system).

2) When two or more channels are being used, and il the last
note-on request is made while all 8 channels are used up, the [irst
note will simply be keyed ofl, and the last one will be granted.
Stacking will not occur (last note priority system).

IRQ
JANDLER

EYENT
DATA

IDB

CURRENT
YOICE

b4
nnaonooan

FMCHIP

J

gouuaouudu

Ociober 30, 1985

[Queuel]

Related SV-calls:

R-00 Damp
R-01 All-Note-Off by queue
R-02 set event into queue

Queue is a process 10 handle the queue buffer that is capable of
accepting up to a maximum of 16 events.

There are queue's for 8 general events (QU=0, ..., QU*7).

Queue's are named as QU#x, and refered as.

QU*x
0thru7 QU#0 thru QU#7
(QU numbers between 8 and 15 are reserved for future
use).

Queue's primary function is to buffer the event flows between the
keyboard and the process of playing IDB.

It ensures the asynchronicity of two independent processes
(keyboard handling and playing IDB's) running simultaneously in
the program space. Working as a FIFO, this effectively increases
the data processing rate without having to miss the note or
seriously delay the performance timing.

The Queue aiso merges the event data from a multiple number of
keyboards, and distributes them to a multiple number of IDB's that
are linked 10 a queue.

The All-note-off event erases presently queued events from the
queue , and sets the All-note-off flag in the queue.

October 16, 1985

[Keyboard]

The keyboard is, in effect , the event generator.

The external keyboard attached to the SFG-05 (MK) is a music
keyboard.

An automatic performance buffer is treated as a music keyboard,
oo,

For "keyboards”, like MK or automatic peformance buffer, events
are then input to QU*0-QU¥7.

[Music Keyboard]

Related SV calls:

K-00 initialize MK

K-01 scan MK

K-02 report MK status

AST-01 MK trigger by asynchronous trap

M-BIOS supports a 49 key Keyboard.
1t is as shown below. It is used as the mounted keyboard (MK).

MK ONLY

]
! LOWEST KEY (44 KEYS)
KC*=2SH(INTERNAL), 29H({MIDI)

HIGHEST KEY
; KC#*=SEH(INTERNAL)
LOWEST KEY {49 KEYS)
KC#=1EH (INTERNAL) S4H(MIDI)

=Z4H{MIDI)

October 16, 1985

The MK can only be linked with Queues, QU#0 - QU#7. If this is
done, M-B10S will register all events sent by MK into the linked
Queue.

December 3, 1985

2-2 Performance parameters for the instrument (IDB)

[Portamento]

Related SV-calls & memory reference:
S-12 define play-mode
R-19 foad KC
iport IDB(w)/portamento speed
m.clka MIDB(w)/clock-A interval

This is applicable to only single voiced IDB (IDB assigned with one
channel). .

Portamento mode can be enabled via S-12 call, together with
appropriately set portament parameters into IDB.

The method to implement portamento requires repeated updates
of KC with specified parameters. To do this, R-19 call (to update
KC with specified pitch increments and load it into channel) should
be called by an appropriate ,say interrupt clock-A, interval.

The Portamento Speed determines the rate of pitch shift during the
portamento, with the Speed=0 being equivalent to no portamento
effect at all.

There are two Portamento Modes, Full Portramento and Fingered
Portamento.

. In Full Portamento, the Portamento will take effect for any
Note-on, and in Fingered Portamento, it will take effect only while
key stacking is taking place. The stacking will take place when
only one channel is assigned to the instrument, and when the first
key still being pressed is pushed onto the stack by the second key-
on, or when the first key is popped out of the stack by the release
of the second key.

Though the portamento is normally modified by IDB variables,
since MBIOS executes the portamento by using Clock-A of the
sound generator IC, changing the CLOCK-A interval value in MIDB
from the initial setting (8000h) will also cause the portamento
speed to change.

December 3, 1985

[Trigger Typel

Related SV-call:
S-12 define play-mode

Applicable only to single voice IDB.

The trigger type can be determined by using the Trigger Mode (set
by S-12 call).

By trigger, we mean that the envelope is generated from the very
beginning at the key-on request.

A trigger will be generated for every Note-on event during the
MULTI Trigger mode. However, in the case of a single channeled
instrument, it is possible not to generate a trigger but to change
only the pitch during the key stacking. Thus the envelope
continues as it is when the second key is on. This is called Single
Trigger mode.

[Sustain Control]

Related SV-call & memory reference:
S-12 define play mode
isust 1DB(w)/sustain RR

This is applicable to all IDB’s.

Sustain controls the release rate (RR) of the envelope after Note
-off {mostly to lengthen the release time).

When Sustain mode is off, the release rate for each operator will
be computed according to RR of the voice as usual. However, il
Sustain mode is on, MBIOS will output the Sustain rate (RR)
contained in IDB to all the operators whose channels are involved
in Note-off events.

Thus , it is possible for the user to write his own Sustain handling
routine under the Sustain mode by simply modifying the contents
of Sustain rate of thelDB. '

[Keycode Sensible Range]

December 3, 1985

Related SV-call & memory reference:
5-00 define 1DB
ikrng IDB(w)/key code range by insirument

‘It is possible to set the KC sensitivity range of the IDB, where only
KC*'s within that range are only accepted.

This function is useful to implement a register sensitive keyboard
- such as split keyboard.

Any deviation from this range in the Note-on event will not be
accepted. However, the Note-off events are not limited in this
manner. All-note-off events will be accepted and appropriate
Note-off processing will be carried out.

With All-Note-Off, since it is granted and performed regardless of
the keycode range, the care must be paid when IDB is linked-up
with MIDI device. For the MBIOS will issue All-Note-Off to the
outside of the keycode range of MIDI device (where the events
may not necessarily need to be turned off),

[Transposition]

Related SV-call & memory reference:
5-00 define IDB
R-19 load KC
itrns IDB(w)/transpose by instrument
m.iros MIDB(w)/master transposition

There are 3 ways to realize transposition; the transposition of the
entire system, the transposition of an individval IDB, and the
transposition by means of altering voice data.

Transposition of the entire system is obtained by modifying the
Master Transpose variable in MIDB.

Individual instruments can be transposed via the Instrument
Transpose variable in the IDB.

Note that transpositions by IDB or MIDB will nnly be realized by
issuing R-19, for it is R-19 that loads the parameters to FM
shynthesizer LSI from itrns or m.irns.

Transposition by voice data is a pitch-shift that has been-
preprogrammed in the voicing data by use of the YRM102 voicing
program. The primary purpose of this feature is to include the

December 3, 1985

"pipe" length of the instrument (8,161 3/5'etc.) in the voicing
. parameters.

When transposition via IDB is attempted for the IDB that has been
enabled by pitchbend, the transposition will not be accessible by
the user.

This is because the pitch bend function uses the Instrumant
Transpose function to accomplish pitch bend.

[Pitch Bend]

Related SV-calls & memory reference:
5-11 set pitchbend
R-19 load KC
ipchb IDB(w)/pitchbend depth

Pitch bend is like a portamento function.

When pitch bend parameter is handed to MBIOS via R-11, it
requires for KC to be updated and loaded into channel, with
appropriate interval using R-19.

Also Pitch Bend Depth by IDB is a single parameter used for the
entire system so that it affects all the instruments with the same
amount of pitch bend.

The Pitch Bend Depth can be programmed from +/- 1 half tone to
+/- | octave with half-tone resolution.

[Volume, Brilliance]

Related SV-calls:
5-10 set brilliance
S-13 set volume

Volume and Brilliance are both OL (Output Level) offsets, with
Volume being the offset for the carrier, and Brilliance that for the
modulator.

Volume is a parameter that exists for every instrument, and can
be adjusted for every carrier of the instrument. -
However, there is only a single Brilliance parameter within the
entire system, and this is applied to only the Brilliance-enabled

October 30, 1985

modulators.
The range of both Volume and Brilliance offsets against OL's is
between 0 dB (MAX) and -48 dB (MIN).

[Noise]

Related SV-call & memory reference:
R-18 load LFO
mnois MIDB(w)/noise frequency

The OPM has a noise generator which is started when operator 3 of
channel 7 receives a key-on command.

Noise parameter such as noise frequency (seed to generate random
number) can be loaded into the channel via R-18.

If the voicing parameter data that has been loaded into the channel
7 has been noise-enabled, it will generate noise.

Related SV-call and memory reference:
5-18 set AMS/PMS
R-18 load LFO
m Ifo - MIDB(w)/LFO frequency
mamd MIDB(w)/AMD
m.pmd MIDB(w)/PMD
m ctrl MIDB(w)/LFO waveform

The operation of the LFO is determined by the Speed, Waveform,
AMD and PMD commands.

Speed sets the frequency of the LFO.

AMD sets the output level of the LFO for amplitude modulation,
and PMD sets the output level of the LFO for pitch modulation.

As depicted in the routing of the LFO, in the following figure, LFO
outputs adjusted by AMD and PMD are common to all the
. instruments. -
Above items that are common to the sysiem (in the MIDB) are

loaded to the FM LSI chip by R-18 call.

October 30, 1985

AMS and PMS set the senmsitivity to LFO modulation for each
individual instrument. Note that AM (amplitude modulation) is
only effective to the carriers of the current operator algorithm.
The Triggered Sync function initializes the LFO phase to 0(zero) in
synchronization with Note-on events.

AMS, PMS and Sync are voice data dependent parameters.

— wave form — —— aperator
LF0 b— LFO speed — 0
/J‘ PMD - - mperatm'
(A (l’D . PMS Py
5 5 i 1
AMD |
E ,8 J
: operator
A #5
| PONLS " =
; ©OAMS
to the next : |
channel : ope:gtor
channel 0 e

71

October 30, 1985

2-3 Voice Library

Related SV-calls:
S-03 define UVL

S5-14 load voice

§-15 get voice

S-16 put voice

5-19 get and load voice
5-21 read UVL

§5-22 write UVL

Voice parameters used to simulate an instrumental sound are
handled together and packed into 64 bytes of data (48 bytes of
data in the case of the system preset library).

Its map is shown in the following page.

The voice library holds these voice parameter sets.

1t has a capacity of 48 voices in MBIOS (called SVL, System Voice
Library), and can be expanded to another 48 voice area in user
RAM called as UVL (User Voice Library).

Voices are refered to by number; 0 - 47 for SVL voices, and 64 to
111 for UVL voices. Voice numbers 48 - 63 are reserved.
Although it is possible to address all the voices, MBIOS assumes
- the following voices of SVL are special voices dedicated to special
~ functions.

That is: wvoices 36 - 39 for chord generation, voices 40 - 41 for
bass note, voice 44 and 45 for percussion , are used by
M-Monitor. :

Voice 46 is reserved for use by the CSM voice sysnthesis driver
(IDB#CSM).

The following is a directory of SVL.

1 brassl 17 piccolo 33 lostring
2 brass2 18 oboe 34 horn lo
3 trumpet 19 clarinet 35 whisle
4 stringl 20 glocken 36 storm
S stringl 21 vibraphone 37 rmbass
6 epianol 22 xylophone 38 rmflt

7 epiano2
8 epiano3
9 guitar
10 ebassi
11 ebass2
12 eorganl
13 eorgan2
14 porganl
15 porgan2
16 flute

23 koto

24 zither

25 clav

26 harpsichord
27 bells

28 harp

29 smadsyn
30 harmonica
31 steeldrum
32 timpani

39
40
41
42
43
44
45
46
47
48

October 30, 1985

rm.guit
rm.horn
rl.bass
r2.bass
snaredrum
rd cymbal
perc 1

perc 2

csm param
no voice

MBIOS is equipped with a file utility to save UVL and load it bacx
to UVL using CMT, data cartridge, and the disk.

1n the following pages, the format of UVL is depicted with further
breakdown of voice data format and detailed voice parameter

map.

00Ch

Q07h

012h

020h

060h

BEOh

uvL (USER YDICE LIBRARY)

7 BYTE
STRING
00h
1] €—— 7 bit user (D
Q0h
08h
YOICE *64
YOICE #65
10h
L »
- p—
YOICE*111 1Bh
20h
28h

30h

ZFh

00h

3

YOICE DATA (48 bytes)

¥.NAME

Y.TYPE
Y.LFO
¥.AMD
¥.PMD
¥.5L0T
YLCNCT
¥.PMS
Y.NOIS
Y.TRNS

¥Y.TL
Y.YEL
¥.KS
¥.DT1
Y.AR
¥.DIR
¥.D2R
Y.RR

OPERATOR=0

OPERATOR* 1

OPERATOR*2

OPERATOR*3

00h

October 17, 1985

VOICE DATA MAP

Name Address Contents Explanations
Offset

v.name OOh [7 byte string] [name of the voice)

v.type 07h [0k] {user code (any number)}

v.lfo 08h [peseree 26 (LFO frequency]
00h=0.0008Hz (slow)
80h=0.2134Hz
FFh=52.9Hz(fast)

v.amd 09h Ixyyy yyyyl (LFO enable & AMD)

%x=<1> enable to load LFO
y=0-7Fh, deepest AMD

v.pmd 0Ah [xyyy yyyyl (sync LFO & PMD)
X=<1> sync LFO at key-on
y=0-7Fh, deepest PMD

v.slot 0Bh [Oxyz u000] {(enable operator}
x=<1> operator *1
y=<1> operator =2
z=<{1> operator *3
u=<1> operator *4

v.cnct 0Ch [xyzz zuuu] {LR, feedback & algorithm)
x=<1> stereo L output
y=<1> stereo R output
z=0-7 (0-4 pai) ,feedback level
u=0-7, algorithm number

v.pms 0Dh [0xxx 00yy] {pms and ams)
x=0 +/-0 cent (pms)
x=1 +/-5cents
x=2 +/- 10 cents
x=3 +/- 20 cents
x=4 +/-50 cents
- X=5 +/- 100 cents

October 17, 1985

x=6 +/- 400 cents
x=7 +/-700 cents
y=0 0dB (ams)
y=1 -24 dB

y=2 -48 dB

y=3 =96 dB

v.nois OEh [xyyz zzzz] {noise/1fowave/noise freq)
x=<1> enable noise
y=<00> sawtooth
y=<01> rectangler
y=<10> triangier
y=<11> sample and hold
z = noise frequency

v.trns OFh [2] {transposition by voice])
-12700 cents to 12700 cents
(2's complement)

operator *0
v.tl +00h {Oeee 300ex] (OL original level}
0 dB to -95.25dB (by 0.75dB)

v.vel +01h fxyyy 000z] {key level scaling & velocity)
x=<0> typeO (low pass type)
x=<1> typel (high pass type)
y= velocity sencitivity
carrier 0 to+-10.5dB (1.5 dB)
index 0 to +-5.25 dB (0.75dB)
Z=<1> enable brilliance

vks +02h [xxxx yyyy] [key level scaling depth, adj.}
x= key level scaling depth
0 to ~-225dB (by 1.5dB)
y= TL (total level adjust)
0 to -11.25dB (by 0.75dB)

v.dti +03h [-xyy zzzZ] {detune & multiple)
x=<0> positive (up) detune
x=<1> negative (down) detune

October 17, 1985

y= 0 -3 detune value (max=3)
z=multiple

z=0 pitch®05

z=1 pitch*1

z=15 pitch*15

var +04h [xx0y yyyyl {key rate scaling & attack rate]
x= 0 - 3 (max(fastest rate)=3)
y=0 - 31(max=31)

vdir +05h [x00y yyyyl {ams enable & decay rate-1)
Xx=<0> disable ams (modulator)
x=¢<1> enable ams (carrier)

v.d2r +06h [xxxy yyyyl {detune-2 and decay rate-2]
x=0 DT is *0
x=1 DT is *¥1.41
x=2 DT is ¥1.57
x=3 DT is ¥1.73
y=0 - 15 decay rate-2(max=15)

v.IT +07h [xxxx yyyyl - {sustain level and release rate)
%= 0 to 14 (0 to -42 dB by 3dB)
x=15 (-93 dB)
y=0- 15 release rate(max=15)

operator *1
18h-1Fh

operator *2
20h-27h "

operator #3
28h-2Fh

all 0's
30h-3Fh

October 16, 1985

2-4 Important Voicing Parameters

Related SV-call:

S-14 load voice

S-19 get and load voice
[Velocity]

Velocity refers to the touch intensity at Note-on time (Initial
Touch), and afTects an offset level for the OL of each operator.
The central value (80h) of the Velocity is used as the normal
setting.

When the Velocity increases, the volume gets louder if the carrier
is sensitive to the velocity, and the sound gets brighter if the
modulator is sensitive to the velocity.

The Velocity Depth covers the effective range of the effect caused
by Velocity. Depth is adjustable for the carriers over a range of
+-12 dB, and +-6 dB for the modulators.

[Eavelope]

The Envelope can be set independently for each operator.

October 16, 1985

0DB

oL
DIR 5L

AR —

RR

-96 DB

KEY ON i
KEY OFF

ENVELOPE

As shown here, the shape of the Envelope is determined by

AR (Autack Rate), DIR (1st Decay Rate), D2R (2nd Decay Rate), RR
(Release Rate), and by SL (Sustain Level) between the 1st Decay
and 2nd Decay. ;

OL (Output Level) offsets the standard level of envelope.

The actual OL commanded in the FM sound generator IC is 2 sum
total of such offsets as OL (original offset), OL Adj {(adjusted offset
for algorithm difference), Keyboard Scaling (Keyboard scaled
offset), Velocity(Velocity offset) and Volume/Brilliance(offset due
to volume or brilliance control).

Note that all the offset amounts are in terms of attenuation from a
0 dB standard.

The offset range varies depending upon the purpose of usage. For
example, OL (original offset) can be set over a range of 0 dB to
-96dB, while OL Adj can be set over a range of 0 dB to -12 dB.

[Keyboard Scaling]

There are two types of keyboard scaling.

One is for the rate(AR,DIR,D2R RR) of the envelope. The keyboard-
rate scaling is carried out by hardware internal to the FM sound
generator IC.

October 16, 1985

LOW KC# HIGH
0
T¥PE -0 KEY
TYPE-1 SCALING
KEY
SCALING

KEYBOARD SCALING

The higher the KC¥, the faster the rates. Depth determines the
amount of keyboard rate scaling.

The other type of keyboard scaling is that for level. Unlike
keyboard rate scaling, this is accomplished by MBIOS.

KS selects two types of keyboard scaling curves.

When a scaling value corresponding to KC¥ is taken out of the
curve, it is multiplied by the Depth to yield the key-scale
dependent offset (adjusted by Depth in effect). Depth servesasa
sensitivity adjustment for level scaling. (Up to -24 dB).

[Multiples]

Multiple (Har monic number, indicated as an F in the FM voicing
program) creates integer multiples (1/2,1,2,3,.,15) of the keyboard
pitch for each operator. -

The ratio between the Multiple of the carrier frequency and the
Multiple of the modulator frequency plays an important role in
determining harmonic structure of the sound.

D12}

October 16, 1985

DT2 (Detune®2/Inharmonic) is used to create inharmonic
multiples of the keyboard pitch.

1t is useful to create an inharmonic pitch for sound such as a gong,
bell, etc.

DT1 (Detune® 1 /Fine) is used to shift the pitch of the operator
slightty out of tune. Detuning is useful to obtain a chorus effect, or
richer sounds.

[Feedback]

The Feedback Level adjusts the amount of feedback to the first
operator (from itself) of each channel over 2 maximum range of up
to 4 *PI radians. '

This is useful to enrich the upper harmonic structure of the sound
caused by the 1st operator.

[Algorithm]

Algorithm determines how the operators are connected together.
There are 8 ways to connect the 4 operators in each channel.

|Stereo L/R]

Stereo L/R is an output-enable function that allows the output to
be routed to either the left, right, or both channels, as desired.

October 16, 1985

" 2-5 Recording and Playback

Related SV-calls & memory reference:

5-02 define EVB

S-04 initialize EVB

§-23 read EVB

S-24 write EVB

R-08 start recording
R-09 set recording clock

R-0A stop recording

R-0B start playback

R-0C set playback clock

R-0D stop playback

fevb MIDB(R)/recording, playback status
mfevb MIDB(W)/EVB file name

MBIO0S supports the recording of events retrieved [rom a queue
buffer, or playback of the recorded data.

However, since there is only a single buffer available, it is not
possible to do both functions at the same time.

Prior to calling recording or playback function,, the user must
provide a buffer where bulk of event data is stored of retrieved.
The name of this buffer is EVB (Event Buffer). There is a service

call available to tell MBIOS where the EVB is going to be.

Both recording and playback will be automatically [inished when
the end of the EVB is reached. Recording will also be terminated
when an ALL-note-off from 2 corresponding Queue is processed.

MBIOS also provides file transfer of the EVB to save or load with
CMT, data cartridge, and disk.

October 16, 1985

2-7 CSM Vocal Synthesis

Related SV-calls:
S-0 define IDB (for IDB#CSM)
5-09 assign channel
S-28 . CSM voicing

The vocal synthesis supported by MBIOS is based upon the
technique called CSM (Composite Sinusoidal Method).

It simulates the spectrum characteristics of the human voice by the
generation of a few sine waves of different frequencies.

In the case of MBIOS, 4 operators (4 sine waves) approximate

the spectrum envelope of the voice.

3
Y(t) = ZAi-E(t]-sin(wi t+ i)
0

Operator #1 of channels#0 through 3 are used to implement the
above sine waves.

CSM vocal synthesis data is divided into overall data and frame
dependent data. “Window" is a time frame (approximately 20
ms) used to analyze CSM parameters, and it will be used as an
interval to reconstruct the voice.

The overall data includes the envelope, E(t).

The frame dependent data inciudes the frequency, wi, amplitude,
Ai, and pitch information of the vocal sound. Pitch can be
obtained by the interval of resetting the sine wave generation,
causing the pitch-dependent harmonic components to spread
around the formant frequency wi.

When the CSM driver is active, due to heavy IRQ traffic, MBIOS
suspends all other processes and concentrates on only CSM
synthesis.

The CSM driver also requires preset data to be loaded into the FM
sound generator IC. Hence IDB#CSM is used. The format of
IDB#CSM is identical to that of any other IDB. However, except
for voice # 46 in the voice library (and hence can not be modified

October 16, 1985

) there is no user processable data in the IDB#CSM.

1/PITCH 2
1/PITCHA “{\

: K2
FRAME /w
i(imrmm 1——>: N:EE:L 2‘—)‘[
IRQ® : L

The above illustrates the principle of CSM voice synthesis. That is,
one spectrum component of possible four formants is generated.
Within the frame interval, exponentially decaying sin-wave (with
its formant frequency and intensity being KC and OL respectively)
is repeatedly caiculated with the given pitch.

The voice pitch is actually the analyzed data from the original
sound, and realized in such a way that envelope repeats by itself
‘with interval given by 1/pitch. This repetition is internally done
within the hardware of FM chip, using clock-A (no interrupt
occurs).

Frame interval is the timing that input data for the genaration of
formant should be updated. This is actually the frame length that
was used in the formant analysis (frame length of auto correlation
window, say 20 ms).

This interval is determined by appropriatelyloaded clock-B
interval timer. When the interval depletes, IRQ is generated to
MBIQS, so that MBIOS knows the timing of data update with next
frame data. Note that, actual loading of the frame data into the
calculation circuit of LSi is synchronized with the end of current
frame calculation. LSI has latches to hold these data until clock-B
timer is depleted.

In order to call CSM driver, whole CSM data (as depicted in the
following page) should be prepared with its top address pointed by

October 16, 1985

the argument to the CSM-call.

The whole CSM data is comprised of successive voice pattern
information. The voice pattern information is a2 meaningful unit of
voice. .

In each pattern, there are succession of formant frames. Each
frame was derived per one CSM analysis window.

Finally frame data is comprised of four fomant frequency (KC) and
four formant intensity data.

Naturaly, while MBIOS is running CSM sysnthesis, four sin-wave
generations are taking place simultaneously.

iM_BUF

CSM DATA PATTERN FORMAT FRAME FORMAT
00h’ 0Ch ’ *| 0000 L
\ Frame Interval PITCH H
PATTERN ﬂ oL#0
*0 FRAME
.0 oL =1
00h oL#2
=
ﬂ oL #3
PATTERN FRAME KC *0
-1 1
KC =1
00h KC =2
]
KC #3
PATTERN FRAME
2 M
B0Oh
NOTE:
PATTERN FRAME INTERYAL = 00 - FFH (CLOCK-B)
N 1000

(256-FI) * 0.286 "

PITCH = DOOH - 3FFH (CLOCK-A)
1000000
(1024-P) * 17.88

HZ

OL = OOH - 7FH (FORMANT INTENSITY)
-0.75 DB STEP
KC = [OXXXYYYY] (FORMANT FREQUENCY IN KC*)

XX%=0CTAYE NUMBER
YYYY=NOTE NUMBER

October 16, 1985

Chapter 111 MBIOS Interface

October 16, 1985

3-1 User Interface

MBIOS control is handled via the SV-call (supervisor call) and IRQC
(IRQ-call).

On the other hand, MBIOS can call the user via AST (Asynchronous
System Trap) and UISV (User Interrupt Service Vector).

The genral format to transfer data between the MBIOS and the
user program is by means of registers and tables (or buffers).

The latter include the MIDB (Master Instrument Definition Block),
IDB (Instrument Definition Block), EVB (Event buffer), and UVL
(User Voice Library).

These are the buffers that are accessible in the program by both
MBIOQS, and the user program.

There also exist some temporary buffers used in SV-call processing
only during the specific SV-call routine.

User program to MBIOS interface:

SV calls (Service calis)
IRQC (Interrupt entry)

MBIOS to user program interface:

AST (Asynchronous System Trap)
UISV (User Interrupt Service Vector)

MBIOS
FFFFh TRANSFERS
INTERRUPTS
OTHER THAN MIDI

MBIOS DITECTED
~ MK,CHORD_KB SCAN,

OR ERROR
MODE 2
INTERRUPT
DB
EVB
uyL
AST /
FROM UISY FROMIRQ /]
MBIOS e
MIDI
INTERRUPT
RUPT
SFG-0S '"}Eﬁ;\f
SY-CALL eies OTHER ni'i"/
ENTRY gulia
IRQC-CALL 0000h

MBIOS INTERFACING

October 16, 1985

3-2 Memory management

[siot switching]

The management of the slot switching is left up to the user.

For example, assume that 0000h-3FFFh of the BASIC interpreter is
mapped in front, and when an interrupt needing MBIOS service
just arrives to the system. It is then the user’s responsibility to
switch the slot so as to map the MBIOS slot in front, then get IRQC
service by MBIGS, and finally switch back to the original siot in
order to exit from that interrupt.

However, as an exception, when the service of file transfer with
CMT, data cartridge or disk, is requested, MBIOS switches the slot (
assuming the primary slot®0 for BASIC only) by itself
appropriately to appropriate the [ile services provided in the
repertoire of BASIC interpreter. Thus, during these services, there
is no need for the user to worry about slot switching and interrupt
handling.

[Memory map]

The memory allocation under MBIOS control is as shown in the
following.

In the case of SFG-01, or under operating mode 1.0, the area from
EDOOh to F37Fh is a fixed work space for MBIOS.

The area from ECOOh to ECFFh is for the MIDB.

Other areas such as IDB, EVB, UVL, and the stack area can be
allocated anywhere between 8000h and ECOOh.

The above fixed mapping:, that is, the operating mode 1.0 conforms
to SFG-01 MBIOS memory mapping. :
However in the case of operating mode 1.1 and 2.0, the base
address for MIDB and MBIOS work (780h bytes in total) can be
allocated anywhere in RAM (between BOTTOM and HIMEM).
Selection of the operating mode and the allocation of base address
are done by I-call (1.0, 1.1, or 2.0).

In doing indexed addressing of the variables in MIDB and MBIOS
work. MBIOS internallv uses 128 bvtes (between F975h and

October 16, 1985

F9FSh) of PLAY queue buffer. Remaining 256 bytes of the queue
buffer can be freely used by application program. '

‘While MBIOS is active, to avoide possible invokation of PLAY
foutine of BASIC, PLAY hook is replaced with NOP routine at the
beginning of I-call

BASIC STUFF

QUEUE BUFFER
—F975H-F9FSH

SAIIS IS

MIDB & WORK
I IIIIIINIi
BY MIDB & WORK
I-CALL v, /f////////
IDB
e COOOH IDB
uvL EVB
UyL
BODOH
{SFG-05
MONITOR)
4000H
e | /0 AREA 1/0 AREA
SFG-01 SFG-05
MBI0S . MBIOS
FIG 3.1 MEMORY MAP OF SFG-01 AND SFG-05

DExxH

BASE ADDRESS
POINTERS

8000H

4000H

October 30, 1985

3-3 Direct Access to MIDB and IDB

{MIDB]

The MIDB (Master Instrument Definition Block) occupies a 256
byte area starting at base address specified by I call (in the case of
SFG-01, it is fixed to ECOOh).

The map of MIDB is shown in the following pages.

Part of the MIDB is used as a work area by MBIOS.

MBIOS maintains various sysiem status bytes and the user can
refer 10 them 1o know what is going on (reporting bytes).

Some bytes are related to the parameters of synthesizer :
performance, such as transposition, clock interval variables, and so
on.

I is possible to directly change these o alfect the synthesizer
perfomance. :

There are also vectors for UISV (User Interrupt Service Vector),
and AST's.

When using interrupt and trap functions of MBIOS, it is necessary
that these vectors be loaded appropiately by the user.

Finally, some 5V-calls require related parameters to be set in MIDB
before the call is made,

These calls are related to those for LFO handling, noise, and file
name specification for the CMT handier.

53

MIDB MAP

Name Address R/W Contents Explanations
Offset
m.clka 0Oh W {clock-A intervall
[*%00 0000] clock-A low
e sesex)(+ 1) clock-A high

m.clkb 02h W

m.trns 04h W

[m* ****](+ 1)

{m* m*]

0000h=18.2 ms (max)
8000h=9.1 ms
FFOOh=0.071 ms {min)

{clock-B interval)
clock-B low

clock-B high
0000h=72.8 ms (max)
8000h=36.4ms
FFOOh=0.285 ms (min)

{Master transpesition]
Fractional pitch

[Pe3630¢ 3:363¢] KC (2's complement)
m.ifo 10h W [P0 3636036¢] {LFO frequencyl
m.amd 1ih W [2] {AMD)
mpmd 12h w [] {PMD)
m.ctrl 13h w [0000 00%%] {wave form of LFQ]
m.nois 14h w {Noise controtl of channel 7]

[x00~ ===
[-00y yyyyl(+0)

<1> noise enable
noise frequency

fevb 1Bh R Recording/Playback status

[0000 00x-] <1% recording,<0> playback
[0000 00-yX+0) <1> busy

m.chrd 23h R {reserved)

m.sram 28h R [2 byte L/H] {s-ram size]

mf8 2Ah W {MIDI-out switch]
[0000 00-x] <1 F8h to MIDI by Timer-A

[0000 00y-1(+0) "<1> F8h to MIDI by Timer-B

m.i38h 30h
m.icka 32h
m.ickb 34h
m.iund 38h

m.trmd 3Ah

m.trmk 3Ch
m.trer 3th

m.fevb 44h
torhy0 88h

m.thru E8h

€ ====

€ = = ==

[2 byte vector]
[2 byte vector]
[2 byte vector]
[2 byte vector]

[2 bvte vector]

[2 byte vector]
(2 byte vector]

[6 byte string]

[96 byte]

[0000 000%]
[0000 000*](+1)

00 0*i(+7

{0038h UISV])
{IRQ-A UISV)
{IRQ-B UISV]
{unidentified-1RQ UISV)

{MIDI fifo/receive
vector)

{MK trigger trap)
{error trap vector)

{file name for EVB data)
{reserved]

{MID}/thru assign]
<1» F8h thru enable
<1» F9h thru enable

<1> FFh thru enable

U moel g, 170)

IDB is a 128 byte control block to represent currently opend
instrument.

The IDB also can be directly accessed to dynamically modify the
instrument parameters.

While the MIDB parameters affect entire system performance, the
parameters in the IDB affect the performance of individual

" instruments.

Since the IDB is defined by the user program, its address should be
known to the user. In the following pages, the IDB map is
depicted.

56

1DB MAP

Name Address R/W Contents Explanation
offset
ikrng OOh w (Key code range)
[Oxaest 2xax] Highest key code
[oxxx %xxx)(+1) Lowest key code
ipchb 02h w 2 {Pitch-bend depth)
[000Q *xxx] 00h=0 cent
01h=100 cents
08h=1200 cents
itrns 03h w {Trnsposition by instrument)
[wnx] Fractional pitch
[pexexx ¥%%x)(+1) KC, (2's complement)
iport 05h w {Portamento speed}. -
 Kaiaiaialiaraiaial | 00h=no portamento
' 01h=fast speed.
FFh=slowest
isust 06h w (RR(Release rate) when
sustain/on is requested)
[0000 ¥%x] applies to all 4 operators
v.name 10h R/W 148 byte voice] [voice data)
loaded by MBIOS upon

issuing SV-call

December 3, 1985

3-4 IRQ Processing via UISY

[IRQ modgsl

MBIOS operates on IRQ mode of either I or 2 of the 280 CPU,
depending on the choice of operating mode (1 0,11, or 2.0).

IRQ mode 1 is set during the processing by the I-callf 0/1.1.

IRQ mode 2 is set during the processing by the I-call 2.0.

IRQ mode | is compatible to MSX standard interrupt, 38h as its
interrupt entry.

IRQ mode 2 is vectorized interrupt. This is espetially useful when
fast processing of MIDI reception is to be implemented,

In addition to the IRQ mode of the system, whether the state
should be EI'ed or DI'ed differs the types of SV-calls to be used.
In the operating mode2.0, the following services should be
requested under IRQ-disabled condition.

I-call, End-call, M_MONITOR -call

RDSLT, WRSLT, CALSLT, EN ASLT, CALLF, RDPP.0

The following service requests can be made under IRQ-Enabled
condition.

R, S, P, K, M, F-call, BDOS-call

UISV (m.icka, m.ickb, miund, m.trmd)

AST (m.trmk, m.trer)

[Source of interrupts]

For MBIOS, there are 3 sources of interrupts that are generated by
the hardware of SFG-05; ie, Clock-A and clock-B and MIDI chip.
Including VDP as another source of interrupt, 4 sources of
interrupts should be considered.

When I-call 1.0/1.1 is first issved to initialize MBIOS, clock-A and
clock-B are automatically interrupt enabled.

For applications that require disabling the clocks afterward, refer-
to section 4-5,

58

December 3, 1985

If MIDI-FIFO has been defined and if I-call2.0 is requested, MIDI
chip is also interrupt enabled.

[Interrupt control flow in the operating mode 1.0/1.1]

In the following figure-A, operating mode 1.0, and 1.1 are
illustrated.

This mode is compatible to Interrupt handling of SFG-01.

Note that when mode { interrupt hits to 38h IRQ entry address,
the interrupt is disabled until necessary processing is completed.

If the interrupt directly hits 38h, there is an option provided by
the MBIOS by which the transfer is made solely to user’s
processing routine.

This can be done with MBIOS by refering to UISV i38h.

If that UISV is not defined, the controf flow goes to the next stage
where the source of interrupts are polled.

The polling is made according to the priority depicted in the figure;
that is, clock-A, clock-B, and other source (normally VDP).
(However in operating mode 2.0, the priority order between clocks
A and B can be changed by S-0E call).

If the souce of the interrupt is identified, and if the corresponding
UISV is defined in MIDB, then the jump is made to the designated
user’s routine. '

When clock-A or clock-B is detecied, the source of interrupt is
reset by MBIOS before the jump is made. However, for the last
branch (other cause, VDP, etc.) no attempt is made to reset the
interrupt request registers. Thus it is a user's responsibility to
reset the interrupt cause in that routine.

User also has to enable interrupt (EI) before he issues RET in his
handling routine.

Also in operating mode 1.0 or 1.1, IRQC-call (009Fh entry) is
provided in order for the user to jump into the interrupt
processing from the different slot. This is usefull if the user
detects the interrupt in the different slot, say in BASIC interpreter,
and tries to route the control to the MBIOS by way of BASIC's
interrupt hook.

59

38h IRQ

Do your routine
RESET, EI, RET

m.i38h Yes

JMP @m.i3Bh

-3
e

\ERUC entry (000Sh)
b

S

Clock-A| Yes m.icke " Yes Do your cloak-A

2. % ? hsndler, EI, RET

JMP @m.icks

£}, RET

Clock-B | Yes m.ickb Yes Do your Clock-B

? ’ : % ? JMP em.ickb handler, El, RET

El,RET

OTHER- | Yes m.iund Yes Do your Otherwise
se] 7 R :
WISE ? reTTp——" hendler, RESET EI,RET
¥DP, elc.
ELRET

Save Registers

Restore Registers

Fig. 3.2-A [RQ Control Flow in Operating mode 1.0 & Tl

voucuiuel J, 1300

[Intercupt control flow in the operating mode 2.0]

In the following figure-B, the procedure for the operating mode
2.0 is illustrated. Here, mode2 interrupt is of cource assumed.
Mode 2 vector is defined in the work space of MBIOS, and there it
is invisible from the user.

Defining the vector and setting mode2 are done during the I-call
with operating mode 2.0.

When MIDI interrupts caused by Tx RDY or Rx RDY hits the system,
the processing is done by the MBIOS totally independent upon the
rest of interrupt processing.

It is assumed that 256 byte FIFO for MIDI reception has aiready
been defined. That is, by way of a separate vector, when RIRDY is,
the cause of the interrupt, the received MIDI data is buffered into
FIFO buffer.

When MIDI data is stored into the FIFQ, MBIQS raises the flag to
tell that FIFO is significant, which will be further processed later
on.

Also MIDI data is written out when TxRDY is the cause of interrupt.
The interrupt is disabled during the above processing.

However, the processing is completed very quickly so that no
possibility of UART over-run is anticipated.

In the meantime, if the cause of the interrupt is something other
than MIDI (this is judged by interrupt arbitration logic in the MIDI
chip), the separate vector routes the control to the process depicted
in the left hand half of the figure-B.

Here, the option to the private processing is provided via UISV,
m.i38h. However, for MIDI processing, it is strongly advised not
to use this option due to the complexicity of DI/EI management.

The polling method of the interrupt cause is somewhat diferrent

from that of the operating mode 1.0/1.1.

Here, after m.i38h check, the possible causes of interrupts are

polled at once and corresponding flags are made. IRQ causing

registers are also cleared. And El is issued at this point.

This enables the MIDI interrupt still hits the system,

Naturally, the other source of the interrupt might come to the

system as well.

Therefore during this process of job schecduling, the use-count
61

ucioper Ju, 1703

management is involved.

Now, in the process, the first flag to be scanned is MIDI flag. If it is
on, and if UISV m.trmd is defined, the jump is made to designated
user routine where received MIDI data should be fetched out of
FIFO. Since El has already been issued, there is no need for user’s
individual routine to issue El belore RET.

After MIDI flag, clock-A, clock-B, and VDP are scanned in that
priority order. Branching method is the same as done in operating
mode 1.0/1.1.

Also notice that IRQC-call is not available in the operating mode2.0.

62

[lj Mode2 Other 1RQ Cause

JMP @0ther

m.i38h Yes
? .
) JMP @m.i38h

Use-Count Menagement,
Poll Clock-4,B,¥DP
Set Flags Accordingly
RESET IRQ SRC., EI

Do your routine
RESET, EI, RET

d

e T :

: DO NOT USE THIS FOR :
: MIDI APPLICATION

Mode 2 primary cause

JHMP eMIDi Q

Handle Tx/Rx RDY w/FIFO
Set MIDI-Flag
RESET, EI, RET

MIDI Yes m.trmd Yes Fetch MIDI data from
—z—""
IN flag? ? JPIP ertrind FIFO, RET
RET
Clock-A | Yes m.icks Yes Do your clock-A
Flag ? __%‘ ?
oy JMP @m.icks bandtor BT
RET
Clock-B | Yes m.ickb Yes " Do your clock-B
Fleg? —%_ ? T
-« JMP emickp | hendier, RE
RET
OTHER- | Yes m.iund Yes Do your OTHERWISE
—G— -
WISE e — hsndler, RET

RET

YDP, etc.

FIG. 3.2-B IRQ control Flow in Opersating mode 2.0

October 16, 1985

3-5 AST (Asynchronous System Trap)

AST is a means 1o transfer the program control from MBIOS to the
user program asynchronously.

This is used when MBIOS wants to let the user know the timing of
an error, or the occurrence of MK triggers. The timing of these
events is, by nature, unknown, thus asynchronous.

When an AST is required, the user is required to define the trap
vectors in MIDB prior o the start of real time handling.

If vectors are not defined, the trapping will not occur.

There are two trap vectors in MIDB; <M.TRMK> for MK and
<M.TRER: for error.

<M.TRMK> is a vector to transfer the key-on/off information (
which is asynchronous to the user routine by nature) from MBIOS.
Music keyboard should be scanned . Hence, <M.TRMK> should be
used together with service call K-01 (scan MK).

Since AST may be generated right in the middle of an SV-call, in
operating mode 1.0/1.1, issuing another SV-call or enabling the
interrupt is not aliowed in the AST handler.

However, in operating mode 2.0, the system assumes that
interrupt is left enabled even when trap is occurred. However, in
AST, no'SV-call but F-call should be requested. BDOS-call should
not be called either.

When returning from the AST routine, issue a <RET>.
Restoring the registers is not necessary.
In the following figure, typical AST usage is depicted.

Register contents when AST is invoked:

[A) trap code
O -

{BCl -

IDE} arg

[HL] -

lxsryl] -
[alternate R] -

64

5 MK_CHRD_TRG: : USER'S
"2 : TRAP
: HANDLER

SER'S PROGRAM RUNNING :

SY-CALL

RAP ROUTINE SCAN MK

(K-01-CALL)

JMP @M.TRMK
: JUMP BY MBIOS
JMP ®MTRER : WHEN TRAP CONDITIONS

TRAP YECTOR IN
™MIDB

M.TRMK: MK_CHRD_TRG
M.TRER: ERROR_HANDLR

CAUSED INTERNALLY BY
S¥-ROUTINES OF MBIOS

FIG. 3.5 AST USAGE

December 3, 1985

3-4 Supervisor Call

There are 9 different SV-call's available, as follows:

I-call (Initialize)
E-call (end MIDB)

R-call (real time)
K-call (Music keyboard)
P-call (Ptay)

S-call (Set up)
M-call (Receive MIDI)

" F-call (FIFO management for MIDI application)
BDOS-call (Disk access)

Once issued, an SV-call will not returs to its call-source until its
processing has been completed.)

However it does not mean that SV-call's have to be issued one after
other by waiting for the previous one to finish.

Most of the above calls can be issued simultaneously under certain
conditions.

This feature enables the paralle! processing of music events.

That is, while P and K calls are being processed, R and M calls
also can be issued in the UISV interrupt routine.

To do this, the system was designed that P-calls and K-calls will
function in either interrupt-enabled or disabled conditions.

The other SV-calls will run properly, only if interrupts are
disabled.

66

October 16, 1985

[I-call (Initialize)]

calling séquence:

DI

CALL 0090h (operating mode 1.0)
00A8h (operating mode 1.1)
00ABh (operating mode 2.0)

(call is returned with interrupt status being disabled).

register conditions:
in out -
Al - *
> - ®
IBC) - . :
[DE] MIDB base address *
(for operating model.1/2.0)
[HL] - ¥
xsryy - X
[alternate R] - 0
where
- contents do not matter
arg arguments associated with function code
= contents will be destroyed
o contents will be maintained

I I-call is an initialization requirement for MBIOS.
2 The interupts should be disabled before I-call.

3 Three different entries for three different operating modes.
(This conforms to the com palibility to the program written on
SFG-01).

4 I-call 1.0 (operating mode 1.0):
-Compatible to MBIOS of SFG-01.
C 67

October 16, 1985

-Fixed address MIDB and MB10S work.
-sets TRQ mode 1.

1-call 1.1 (operating mode 1.1):
-Base address of MIDB is set anywhere in RAM.
-sets IRQ model.

I-call 2.0 (operating mode 2.0):
-Base address of MIDB is set anywhere in RAM.

-sets IRQ mode 2.

In processing of 1-call, MBIOS grabs and intializes BASIC's
PLAY buffer (between F975h and F9F5h) for necessary indirect
addressing of MIDB.

MIDB also alters the PLAY hook to NOP so as to prevent PLAY
queue area from being accidentally accesed by PLAY entry.

It will be freed when END-call is issued.

68

October 16, 1985

[E-call (End MBI0S)]

Calling sequence:

D1
CALL 00Bth
(call is returned with interrrupt status being disabled)

Registers:

in out
[Al -
O -
{BC] -
{DE -
[HL] -
[xs1yy -

W oW oW oW W

L]

{ Closes MBIOS and disables all the interrupt sources of SFG-05.

2 Frees queue buffer area of PLAY by BASIC routine.
(The queue buffer between F975h and F9FSh has been used as
fixed address pointer area for indirect addressing of MIDB and
MBIOS work).

3 The interrupt mode is reset to mode-1.

ucioper JuU, 1983

[R-call (Real time)]

Calling sequence:

Opearating mode 1.0/1.1:
DI
CALL 0093h (or 0008h)
(call is returned with interrupt staus being disabled)

Operating mode 2.0:
El
CALL 0093h (or 0008h)
(call is returned with interrupt status being enabled)

Registers:

in out
[A] func# status
> = error
[BC] arg x
|DE] arg =
[HL} arg *
(IX/IY} - 0
[alternate R} - o

1 R-call is a real time processing call.

2 The functions of R-calls involve generation of events and
clocks.

3 R-call can be issued in UISV's.
4 R-call can be issved in AST-01 but not in AST-02.

5 Run time error, if detected, will be indicated by the <C> flag.

70

i ol]

[K-Calt (Music keyboard)]

Calling sequence:
Operating mode 1.0/1.1:
DI (or EI)
CALL 0096h
{call is returned with interrupt status being same as it
entered) -
Operating mode 2.0:
El
CALL 0096h
(call is returned with interrupt status being enabied)
Registers:
in - out
[A] func#® 0
© - busy
[BCI arg =
[DE] arg =
[HL} arg o
[1X/1Y] - [}
[alternate R] - 0

1 K-call is used for the initialization and scanning of MK.

2 The busy condition (<C>=1) occurs when a K-call is issued before
the previous K-call has been completed.

3 K-call can be issued in UISV traps.

4 K-call can not be issued in AST's.

71

October 30, 1985

[P-Cait (Play)]

Calling sequence:

Operating mode 1.0/1.1:
DI/EI
CALL 0099
(call is returned with interrupt status being same as it
entered)

Operating mode 2.0:

El

CALL 0099h

(call is returned with interrupt staus being enabled)

Registers:
in out

[A) - 0
> - error
[BCl - :
IDE] queue map x
[HL] - ¥
[1X/1Y] - 0
[alternate R] - o

1 P-call retrieves events from the queue and plays them using
the corresponding IDB.

2 The busy condition occurs when P-call is issued before the
previous P-call has been completed. The second P-call is
ignored. This will be indicated by <C>.

3 P-call can be issued in UISV traps.

4 P-call can not be issued in AST's.

72

October 30, 1983

[S-Call _ (Set up)l

Calling sequence:

Operating mode 1.0/1.1:
DI
CALL 009Ch (or 0010h)
(call is returned with interrupt status being diabled)

Operating mode 2.0:
El ;
CALL 009Ch (or 0010h)
(call is returned with interrupt status being enabled)

Registers:

in out
[A] func* ’ error®
O - error
[BCI arg 3
IDE] arg z
[HL} arg o
[1X/1Y] - [
|alternate R] -)

I S-call is a request that does not require real time processing.
2 <G =] indicates that error has been detected.
_ 3 IF «©O=1 and;
A=00h, then busy condition (P-call, K-call or another
S-call is busy).
A is non-zero, then other error was detected.
For detail, see individual S-call syntazx.
4 S-call can be issued in UISV traps.

5 S-call can not be issued in AST's.

73

Lciober JU, 1985

[M-cali (Receive MIDI)]

Calling sequence:

Operating mode 1.0/1.1:
DI

CALL 00ASh
(call is returned with interrupt status being disabled)

Opearating mode 2.0:

El

CALL 00AS5h

(call is returned with interrupt status being enabled)

Registers:
in out

[Al - E
<> - x
[BC) - 0
[DE] - data/status
[HL] - o
[1X/1Y] - (4]
[alternate R} - o

1 M-call scans the MIDI input port or MIDI-FIFO.

2 If data is present at the port, it fetches the data in the D
register.

3 Eregister contains, when returned, MIDI interface status.

4 M-call can be issued in UISV traps and AST's.

74

December 3, 1985

[F-Call (FIFO management)]

Calling sequence:

Available only in operating mode 2.0:
El
CALL 00Blh
(call is returned with interrupt status being enabled)

Registers:

in out
[A] func® x
& - =
IBC] parameter C
[DE} parameter E
[HL] - e
[x/s1y) - o

1 F-00 clears the reception FIFO buffers for MIDI communication.

2 F-Olclears the transmission FIFO buffers for MIDI
communication.

3 FIFO buffers can be defined by S-05 call.

4 F-02 is to reset the error fiag of MIDI communication channel,
occured during the MIDI reception.

S5 F-03 is a function to send MIDI-real-time-data (F8h-FFh).
This is equivalent to R-21 call.

6 F-call can be issued in UISV traps and AST's.

75

VUWDST Ju, 17037

[BDOS-calt (Disk access routines)]

Calling sequence:

operating mode 1.1
DI
CALL O00B4h
(call is returned with interrupt status being disabled)

Operating mode 2.0

EI
CALL O00B4h
(call is returned with interrupt status being enabled)
Registers
in out
[A] see BASIC status
<G> - <0> normal <l> illegal
call
[BC] see BASIC see BASIC/substatus
[DE] see BASIC see BASIC
[HL] see BASIC see BASIC

1. MBIOS disables IRQ state in [h.kei] routine.
2. lllegal call conditions

-MBIOS is already performing BDOS-call.
-Disk does not exist.
-MBIOS is alreadv performing SV-call or UISV.

3. Status
-FEh; disk error (with sub status)
-other ; see BDOS status manual

4. Substatus
01h> write protected
<02/03h> drive not ready (R/W)
76

October 30, 1985

<04/05h> CRC error (R/W)
<06/07h> seek error (R/W)
<08/09h> record not found (R/W)

5 BDOS-call can not be issued in UISV or AST.

October 30, 1985

CHAPTER 1V MBIOS Syntax

(78)

R) 4 TS

4-1 1- call

(Initialize MBIOS: Opearating mode 1.0)

Entry address: 0090h

Registers: - .
[A] = E
{63 N -
IBCl - .
[DE] - B
[HL] # =

! This is 2 compatible mode to I-call of SFG-01.

Necessary MBIOS work is allocated to the same memory address as
that fixed 1o SFG-01. -

2 DI prior to I-call.

3 Although in this mode, the base address of MIDB is fized to ECO0h,
The internal addressing to MIDB still uses indirect addressing using
128 bytes of BASIC's queue buffer (F975h) for pointers.

To prevent this buffer from being accidentally used, BASIC's PLAY
entry is deactivated by I-call processing.

4 Initialization includes the following operation.

i Initialize the MIDB.
ii Clear AST and USIV tables.
iii Clear IDB, UVL, and EVB buffers.
iv Set Z80 interrupt mode 1o mode 1.
v - Enable clock-A, and clock-B.
vi Initialize PLAY-queue area with pointers
v Load 00h into MUSICF (FB3Fh), and replace hook
H.PLAY (FFC5h} with:
pop ki
ret

December 3, 1985

&]‘.u c!:ll mary of default settings in the MIDB and system status during an

MIDB:

Clock-A

Clock-B

Master transposition
LFO speed

LFO waveform

AMD

PMD
Noise
UISV table
AST table

System status:
Default RHB pointed
IDB's poun
EVB and UVL
Br

illiance
Pitchbend

melka
n.clkb:
m.lrns:
m.lfo:
mctrl
m.amd:
m.pmd:
m.nois:
m:i38h:
m.trmk:

(80

8000h (enable interrupt)
8000h (enable interrupt)
0000h

00h :

Oh (saw-tooth)

00h

00h

00h (disabled)
all 00h

all 00h

_RHB*0

all cleared
all cleared
FFh 5
00h

e ———— g v

1- call

(Initialize MBIOS: Opearating mode 1.1)

Entry address: 00A8h

Registers: = Bt
[A] - -
<« - &
[BC] - *
[DE] MIDB base address t
[HL] = =

1 This is an entry to operating mode 1.1.
In operating mode 1.1, MBIOS work (MIDB) can be allocated
anywhere in ram.

2 180's interrupt mode is set to mode 1.

3 Inorder to implement indirect addressing to MIDB, MBIOS uses
128 bytes of BAISC's queue buffer (F975h) as a pointer bank.
To prevent this buffer from being accidentally used, BASIC's PLAY
entry is deactivated by I-call processing,

4. Initialization includes the following operation.

i Define and initialize the MIDB (780h by1es).
it Clear AST and USIV tables.
iii Clear IDB, UVL, and EVB bulfers.
iv Set up pointers into PLAY-queue buffer. -
v Load 00h into MUSICF (FB3Fh), and replace hook
H.PLAY (FFC5h) with:
pop hi
rel

vi_Set ZBO interrupt mode to mode |.
vii Enable clock-A, and clock-B.

December 3, 1985

I- call

(Initialize MBIOS: Opearating mode 2.0)

Entry address: 00ABh
Registers:
In Out

[A] - =
o) - -
[BC] - ¥
[DE] MIDB base address x
[HL] - 2

This is an entry to operating mode 2.0

In operating mode 2.0, MBIOS work (MIDB) can be allocated -
anywhere in ram.

180’s interrupt mode is set to be mode 2.

In order to implement indirect addressing to MIDB, MBIQS uses
128 bytes of BASIC's queue buffer (F975h) as a pointer bank.

To prevent this buffer from being accidentaily used, BASIC's PLAY
entry is deactivated by I-call processing.

Initialization includes the following operation.

Define and initialize the MIDB (780h bytes).
Clear AST and USIV tables.
Clear IDB, UVL, and EVB buffers.
Set up pointers for indirect addressing of MIDB into
BASIC's PLAY-queue buffer.
Load 00h into MUSICF (FB3Fh), and replace hook
H.PLAY (FFC5h) with:
pop hi
ret
vi Set Z80 interrupt mode to mode 2.
vii Set internal mode-2 vector.
viii Enable clock-A, clock-B, and UART.

TR

<

{4-2] END-call

(Shut down MBIOS : operating mode 1.1 and 2.0)

Entry address: 00B7h

Registers; in out
[A] - *
(Y - =
[BC] - "
[DE] - .
[HLI - B
1IX/1Y] - *

I This resets MBIOS to normal MSX operating environment.
-Frees BASIC's queue buffer
-resets PLAY hook to normal
~set ZBO's interrupt mode 10 model

2 donot issue END-call while END-call has already been issued.

October 30, 1985

4-3 R-call

R-00 System Ali-note-ofl' {damp)

(This issues All-note-off events into all 7 Queues and damp all the
engaged channels) '

Entry address: 0093h

Regislers:
[A] 00h 00h
(02 - 2
[BC] - E
[DE] - .
[HL] = .

- R-01 All-note-off

(S T T TV

Awad

{Issues All-note-off event to designated Queue)

Entry address: 0093h

Registers
[Al Oth 004
K <0
[BC] Qu#/- *
[DE] - ¥
[HL] = c

1 QU#¥ [B]

[00000xxx] xx¥=0 - 7 QU#

R-02

October 30, 1985

Set Event into Queue

(Sets event into designated Queue)

Entry address: 0093h
Registers:
(] 02h 00k
<« - error
{BC] Qu#/- =
[DE] Event £
[HL] - 5
1 QuU* [B]
|00000xxx] 1xx=0 - 7 ;,QU*
2 Anerror <O will be set when the QUEUE is already full, and the
corresponding event will not be registered inio the Queue.
3 The event format:
15 876 543210
WOTE O [1] k= | WELOCHTY |
15 876 543210
NOTE OFF [o] ~ke= [o]o]o]ofoolo]o]
&LL NOTE OFF (NO DATA)
(86 .)

Baloher sS4, 1VX2

R-08 Start Recording

{Start recording from the designaied Queue to the EVB)

Entry address: 0093h
Regisiters:
[A] 08h 00h
i - 0>
[BCl qu#/- Y
[DE] - L
{HL} - g

1 Qu+= IB]
[10000xxx] Ixx=0 - 7, QU#

2 This will be ignored when the EVB is undefined.

UCLODeEr SuU, 1Y58)

R-09 Set Recording Clock

{This provides the timing clock for recording).

Entry address: - 0093h
Registers:
[A] 09h 00h
O - <>
IBC] - *
[DE] - .
[HL] - ¥

1 This will be ignored in any mode but recording.

2 Toformulate the clock pulse train, this is normally issued
successively in each interrupt handler routine. :

(B8)

R-0A Stop Recording

{This stops the recording from Queue)

_Entry address: 0093h
Registers:
[A] OAh 00h
© - 0>
IBC] - B
[DE] - =
[HL] = =

I This registers an All-note-off event for a Queue that was being
recorded. y

2 This will be ignored in any other mode than recording.

R-0B

Start Playback

December 3, 1985

(This carries out playback from the EVB for the designated Queue.)

Entry address: 0093h
Regisiers:
[A] 0Bh 00h
© - <>
[BC] Qu#/- ™
[DE] - :
[HL] - ¥
1 QU# [B]
[10000xxx] xxx=0 - 7 QU#

2 This will be ignored when the EVB is undefined, or while playback/

recording is already busy.

R-0C Set Playback Clock

{This provides the timing clock for playback).

Entry address: 0093h

Registers:
[A) 0Ch 00h
© - <0>
[BCI - 8
[DE] - E
[HL] - .

1 This will be ignored during every mode except for playback.

2 Toobtain a clock pulse train, this call is normally issued
successively in each clock interrupt routine. .

October 30, 1985

R-0D Stop Playback

{This stops the playback).

Entry address: 0093h
Registers:
" [A] 0Dh 00h
& - <0
IBC] - B
[DE] - *
[HL] = =

1 This sends an All-note-off event for the Queue that was being
played back.

2 This will be ignored in any other mode than playback.

R-18 Load LFO

TIRATIT] % T

{Load LFO parameters into the FM sound generator 1C}.

'Entry address:

0093h

Registers:
[A]
G
[BC]
[DE]
[HL]

1 Preset the following LFO parameters into the MIDB prior to

issuing this command.

MIDB entries:
m.Ifo
m.amd
m.pmd

m.ctrl
m.nois

Speed
amd

pmd

wave form
noise

October 30, 1985

R-19 Load KC
(Loads the KC into the FM sound generator 1C).

Entry address: 0093h
in out
[A] 19h 00h
G - <0>
[BC} = 5
[DE] - *
[HL] ~ 2

I Itis used to load KC information to currently engaged channel,
2 For portamento application:

Issue this command in synchronization with CLOCK-A.

Portamento rate information stored in currently engaged IDB will

be added to the current| accumulated KC information and be loaded
into assigned channel the chip.

This way, KC_pitch of the instrument will be updated with given pitch
interval'at time intepval rate of CLOCK-A.

(¥

For transposition:

Load MIDB or IDB appropriately with transposing information, and
issue this command once,

4 for pitchbend:

Load MIDB or IDB appropriately with pitch inform ation, and issue this
commands succeedingly with appropriate interval,

vecEmoer 5, 1982

R-20 Send MIDI message

{Outputs a given MIDI message MIDI-FIFO for transmission).

Entry address: 0093h
Régisters: .
m out

[a) 20h * 00h
© - <0>
[BC] message size E
IDE] message address .
[HL] ~ *

1 This transmits a block of data specified by size and its buffer address
into MIDI-FIFO.

3 Care must be taken when non-MIDI packet is to be sent.
For lh;,-i-;o might be a conflict with other requesting routine for the
same . ’

This call makes no attempt to merge more than one messages,
that are requesting the same FIFO, into one message stream.
I FIFO is full, it waits until the FIFO becomes ready.

If FIFQ is not defined, it transmits a block of data from the MIDI-port
directly.

6 If the port is busy, it waits until the port becomes ready.

December 3, 1985

R»-21 Send a byte to MIDI

{Outputs a given single byte of MIDIdata into MIDI-FIFO
for transmission).

- Entry address: 0093h
Registers: |

in out
[A) 21h 00h
<« - D>
IBC} -/data x
[DE] - E
[HL] - *

1 This sends a byte of data to FIFO for transmission.

2 Tl"ﬂ;,i s se it al time data betw: 8h and

3 Care must be taken when a byte data between 00h and F7 is to be
sent.

For there might be other routine which is using the same FIFO for its
own data transmission.

This routine makes no attempt to merge more than one MIDI
messages into a consistent MIDI message stream when multiple
number of FIFO requesting sources collide.

4 Il FIFO is full, it waits until the FIFO becomes ready.

When no FIFO is defined, access is made to the MIDI port directly.
If port is busy, it awaits until the port becomes ready.

October 30, 1985

[4-41 K-Call

K-00 Init MK

(Initializes MK, sets velocity for MK, —r
and establishes the link up between the MK and the specified queue}.

Entry address: 0096k
Registers:

in out
[A] 00h 00h
<« - busy
[BC] link/mode *
[DE] velocity/- ™
{HL) - ke

1 link [B]

{x0000yyyl

3=¢<0> no link with queue
1=¢!> link with queue
yyy=0-7 , QU*

2 mode [C]
{0000000] always 0.

3 Velocity [D]
[zxxxrrxx]
1xxx23771=00h (minimum velocity) 10
-FFh (maximum velocity)

October 30, 1985

E-01 Scan MK

(Scans the MK. Event detected will be written into (linked) queue).

Entry address: 0096h

Kegisters:
in out
[A] 01h 00h
XG> - busy
[BC] = *
IDE] - '
[HL] - %

1 The output of this command is to write the detected sven! into the
queue.

2 Normally, 1o scan the MK, this call needs to be issued successively, by
each interrupt cycle.

3 Ir AST vectors for MK has been specified in the MIDB, it will
cause AST trapping via AST vectors.

K-02

Report MK status

UCLODRr U, 1Y&)

(Scans the MK, and returns the on/off status of the MK).

_Entry address: 0096h
Registers:
in out
[A] 02h 00h
0> - busy
[BC] - =
[DE] buffer %
address
[HL) = &

I

The buffer contents will be comprised of 9 bytes as shown below.
Each bit represents the on/off status of corresponding key position.

0:

msb

Isb

0 CB A* 0 A G* G

CF*FE 0 D* D C®
0 Coo0 0 000

99

higher KC#

lower KC#

October 30, [98S

4-4 D - call

p Play

{This retrieves events from the designated queues, and plays them}

Entry address: 0099h
) Registers: _

in out
[A] - 00h
O - busy
IBCl : =
[DE] Queue map !
[HL] ' E

I Queue-map [DE]

[00000xxxhgfedcba) x1x ; reserved (fill zero's).
a U#0
b U]
b QU7

2 PLAY processes all the event requests in the assigned queues by

retrieving and playing accordingly(note-on/aoff) one event by one until
the queue gets empty.

(100)

December 3, 1985

4-5 S-call

5-00 Define 1DB

{Either defines or cancels the IDB).

Entry address: 009Ch
Registfers: .
in out

[A] 00h 00k
{03 - busy
[BC] IDB#/- .
[DEI IDB address *
[HL] = *

1 Cancels the IDB when the IDB address (contents of DE) = 0000h.

2 Cancelling the IDB, while it is still engaged in key-on, should be
avoided. :

3 The size of IDB is 128 bytes.

{ 101)

October 30, 19835

Initial setting of the 1DB parameters:

KC range 00h to 7eh
Pitchbend depth ' 00h
transposition by instrument 00h
portamento speed 00h
RR(default sustain value) 03h
volume COh

Voice data cieared

Initial setting of the IDB mode (held in the system):
sustain-off

multi-triggered

fingered portamento (with 0 speed)

pitchbend enabled (with 0 depth)

* The above setling is equivalent to issuing, mode=0, via an S-12 call.

(102)

December 3, 1985

$-02 Define EVB
{Either defines or cancels the event buffer (EVB)).

Entry address: ¢09Ch

Registers:
in out
(Al 02h ooh
<« - pusy
{BC} size 2
IDE] address *
{HL) = .

1 The EVB is canceied wnen Lhe adaress in iDE] is 0600n.

2 When defined, the contents of the EVB will not be cleared.

(103)

WelUUEE Ju, L Fu

$-03 Define UVL

{Either defines or cancels the user voice library (UVL)}

Entry address: - 009Ch
Registers:
in out

[A] 03h ooh
> - busy
(8C] - .
[DE] address .
[HL] = '

1 The UVL ie cancelted wrhex the addoace iz IDE] ic 00000

2 When defined, the contents of UVL will not be cleared.

(104)

Betaber 30, 1983

S-04 Initialize EVB

{This initializes the event buffer (EVB)).

Entry ad dress: 009Ch
Registers:
@a out

[A] 04h och
O - busy
IBC - .
IDE] = .
[HL] - .

{ 105)

December 3, 1985

$-05 Define FIFO

(This defines FIFO buffer for MIDI transmitter/receiver)

Entry address: 009Ch
i Registers:

in out
1Al 05h 00h
< - busy
(BC] FIFO/Tr address x
[DE] FIFO/Re address X
{HL] - E

I This SV-call includes the function of S-0C (initialize MIDI port).
if 1iéig;ﬁ used in operating mode 1.1, the eflect is same as that of

The size of FIFO buffer is 100h bytes each for FIFO/Tr and FIFO/Re.

3 F%Fdl;/Tr or FIFQ/Re will be cancelled if 0000k is specified as FIFO
address.

Interrupt BxRDY IRQ is enabled only while FIFO/Re is defined,
5 Interrupt TXRDY IRQ is enabled only while FIFO/Tr is defined.

(106)

AR Gy ¢ Y H

$-09 Assign channel

(This allocates the channels of the FM sound generator IC for the
requesting IDB).

Entry address: 009Ch
Registers:
in out
[1A] 0%h ooh
Lo - busy
[BC] ch*0t03 *
[DE] ch#4107 *
[HL] = &
1 IBO

[xxxxyyyyzzzzittt]

xxxx=0 - 7 ; IDB¥ assigned to channel 0
yyyy=0 - 7 ; IDB* assigned o channel |
zzzz= 0 - 7 ; IDB* assigned to channel 2
tttt= 0 - 7 ; IDB* assigned to channel 3

Ippppgaqyrrrrssss)
pppp=0 - 7 ; IDB# assigned 1o channel 4
qqqq=0 - 7 ; IDB¥ assigned to channel 5
rrer= 0 - 7 ; IDB* assigned to channel 6
ssss= 0 - 7 ; IDB* assigned to channel 7

IDE]

2 IDB* 8h - Fh are reserved for future usage.

- 3 Assigning a channel will not alter the previous settings of the LFO.

(107)

————g wry A s

S-0A Assign IDB to Queue and/or MIDI channel

{This assigns the corresponding input Queue and MIDI output channel
to the designated 1DB).

Entry address: 0609Ch

Registers:
in out
[A] 0Ah ooh
<« - busy
[BC] 1DB#/- x
[DEl Queuelink/MIDIlink *
[HL}J - *

1 Queuelink [D]
[10000xxx] xxx=0-7:QU#

MIDIlink [E] '

[x000yyyy]l x=<I> ; MIDI is assigned
x=<0> ; MIDI is not assigned
yyyy=0 - Fh ;MIDI channel #

2 When this call is issued, an All-Note-Off event will be executed
for the corresponding IDB.

3 Only MIDI channel (without using any channel of FM LSI) can be
assigned.

(108)

Retaber 20, 1985

S-0B All-Note-Cif by 1DB

(This issues and executes an All-note-off to designated IDB).

Entry address: 009Ch
‘Registers:
in out
[A] 0Bh och
N - busy
[BC] IDB#/- .
IDE] = .
[HL] & *
1 IDB* [B]

100000xxx} xxx=0 -7 ;IDB¥

7 ino

December 3, 1985

$-0C Initialize MIDI

(This initializes the MIDI poct).

Entry address: 009Ch =
Registers:
) in out
[A] 0Ch ooh
© - busy
[BCl = *
[DE] - *
[HL] o :

1 1noperating mode 1.0/1.1, this routine disables both the RxRDY and
TxRDY interrupts of MIDI.

Thus in operating mode 1.0/1.1, MIDI is driven only under non-
interrupt condition.

$-0D

December 3, 1985

Enable/disable OPM interrupt

{This allows the user to [reely control the interrupts of clock-A/B)

Entry address: 009Ch
Registers:
in out
[A] 0Dh ooh
(% - busy
IBC -/mode ¥
IDE] - x
[HL] _ - *
1 ode [C]
[000000yx] x=1 :enable clock-A

y=1 ;enable clock-B

S-0E Select UISV priority mode

October 30, 1985

{This selects polling priority mode of UISV in operating mode 2.0)

Entry address: 009Ch
Registers:
in ~ out
[A] 0Eh ooh
<« - busy
[BC] -/mode J
[DE] = *
[HL] - *
1 Mode [C]
[0000000z] 3=0 MIDI > clock-A > cloek-B > VDP

x=1 MIDI > clock-B » clock-A > VDP

{

12

October 30, 1985

S-10 Set Brilliance

{This sets the system parameter , Brilliance).

Registers:
in out

[A] 10h ooh

<© - busy

[BC] -/Brilliance *

[DE] - *

[HL] - *

1 Brilliance [C]

[xxxrxxrz] XXIXXXXY = 00h (dark) to

FFh (brightest)

2 Since the Brilliance is a system parameter, this affects the whole
Sysiem, not merely a single instrument. . - :

October 30, 1985

5-11 Set pitchbend

(This sets the system parameter, pitchbend).

Registers:

in out

[A] 11h ooh

<& - busy

[BCI -/Pitchbend *

|DE] - =

[HL] - *

1 Pitchbend IC]

[xxxxx3xY] YYYXXXIX = -128 10 +127 (2's complement)

xxxxixxx = 00h 0%

80h(-128) -100%
7Fh (127) +100%

2 Asin portamento, to reafize pitchbend, an R-19 call (updating KC

information) should be repeatedly issued in syncronization Lo each
A-clock interrupt.

r 1194 13

Qataber 30, 198RS

$-12 Define Play-mode

{This sets the performance mode of the designated IDB (by the FM
sound generator 1C).)

Registers:
in out
[A] 12h ooh
<« - busy
[BCI IDB*/Made *
[DE] - s
[HL] - *
1 1DB* [B]
[00000xxx] xxx= 0 - 7; IDB#
2 Mode Q]
[00001zyx] x=¢<I> sustain on
y=¢1> single triggered
y=<0> multiple triggered
=l> full portamento
z=«> fingered portamento
1=<> disable pitchbend

t=<0> enable pitchbend

October 30, 1985

S-13 Set Volume

(This sets the Volume of the designated 1DB}.

Registers:
in out
. [Al 13h och
(e - busy
[BC] IDB*/Volume b
[DE] - . '
[HL] - *
1 1DB# [B]
[06000x23] xxx=0 - 7 ; IDB*
2 Volume [C] : :
[xxxxxxx3) xxxxxxxx= 00h (min) to

h (max)

S-14

Load Voice

December 3, 1985

(This loads the voicing parameter information of designated 1DB
into the FM sound generator IC).

Registers:

in out
[A] 14h ooh
© - busy
IBC] IDB#/- =
(DE} . s
[HL) - *

1 IDB* [B

[0000xzxx] xxz=0-7;IDB*

October 30, 1985

S-135 Get Voice

(This transfers voicing parameter information from the Voice
library to the voicing parameter area of the designated 1DB).

Registers:
in out
[A] 15h och
< - busy
IBC] 1DB#/Voice**
[DE] - ¥
[HL} - *
1 1DB* [B]
[00000xxx] xxx=0 - 7 ;IDB¥
2 Voice* [C]
[xxxxxxxX] xrxxryxx=00h - 2Fh for SVL

4oh - 6Fh for UVL
3 The transfer will be ignored if the UVL has not been defined.

October 30, 1985

$-16 Put Voice
(This transfers the voice parameter information from the IDB to
the UVL) : .
Registers:
in out
[A] 16h ooch
© - busy
[BC] 1DB*/Voice® *
[DE] - -
[HL] - *
1 IDB# [B]
[00000zxzx] xxx= 0 - 7 ;IDB#*
2 Voice® [C]
. [xxxzxrzx] XXXXXXXX= 00h - 2Fh for SVL

40h - 6Fh for UVL

3 The transfer will be ignored if the UVL has not been defined.

October 30, 1985

S-17 Set stereo L/R

(This sets L/R cornitrol of currently engaged voice with IDB)

Entry address: 009Ch
Registers:
in out
[A] 17h ooh
S - busy
[BCl IDB*/data *
[DE] - *
[HL] = 5
1 data IC]

[yz000000] = :enable left

1=1
y=1 enable right

S-18

Set pms/ams

Qetaber 30, 1985

(This sets pms/ams to currently engaged voice with 1DB)

Entry address: 009Ch
Registers:
in out
[A] 18h och
<« - busy
[BC] IDB#/data *
[DE] - X
[HL) - *
1 data [C]
[oyyyo0zz] xx pms
Yyy ams

r ama

October 30, 1985

s-19 Get & load voice

(This gets and loads voice into channels hooked up with IDB
Same as issuing S-14 after S-15).

Entry address: 009Ch
Registers:
in out
[A] 18h och
(S - busy
[BC] IDB*/voice® L
IDE] - a

[HL] - *

December 3, 1985

S-20 File Driver
Entry address: 009Ch
Registers:
in out

IA) 20h error location
< = error
[BC] - -/error status
[DE] contro! block address *
[HL] - :
[Alternate Rg's] destroyed

1 This call should not be issued in UISV.

2 Control block specification
-17 byte control block

byte

byte

word
word

.blkb 8

blkb 3

access code#

00h= read file

01h= write file

02h= read UVL

03h= write UVL
device#

00h= CMT

10h= s/ram (data cartridge)
20h= defauit disk drive
21h= A:

22h= B:

buffer address for access code® 00h/01h
buffer size for access code*00h/01h

(8 byte file name string)

device#00h & access code®0/1 ---6 characters
device®#00h & amess code#2/3 -- "VOICE " used by MBIOS
device®#10h --- not used

dewne”Zﬂh/Zlh/ZZh ---8 characlers

(3 byte file name extension)

device#00h --- not used

device#10h --- not used 2

device#20h/21h/22h --- 3characters
- ("VOG" as default by MBIOS,
for acs-code#2/3)

December 3, 1985

3 <© =1 indicates error has been detected.

4 Ecror status [C]

0lh=
02h=
03h=
04h=
05h=
06h=
07h=

" 08h=
0%h=

0Ah=

0Bh=
0Ch=

5 Error location

01h=
02h=
03h=
04h=
05h=
06h=
G7h=
08h=

(Al

disk i/0 error (write protected)
disk i/o error (drive not ready)
disk i/0 error (cre error)

disk i/o error (seek error)

disk i/o error (record not found)
disk i/o error (write fault)

i/o error

(undefined disk i/o error,

cmt i/o error,

s-ram i/o error)

BDOS error
invalid parameter .

(invalid access code, device#)
invalid file type error)
(invalid BASIC id®, invalid YAMAHA id¥)
file body size is larger than buffer
DOS is busy

error has occured before physical access '

open error

read error in BASIC's header file
read errof in file body

close file error

create file error

write error in BASIC's header file
write error in file body

Octaher 30, 1985

- 21 Read UVL
(This reads in the UVL from the CMT).
Entry address: 009Ch
Registers:
in out
[A] 21h error®
< - error
[6Cl - 3
[DE] - *
[HL] - X
1 <0 =1 indicates error has been detected.
Ifso, further infor mation is provided by [A].
2 Error® [A]
[xxxxxExx] xxxxxxxx=00h Normal end
FFh Size Error
_ Other non-0%¥ MSX-BASIC error
3 The [ile name on the tape is assumed to be "VOICE".
Search on the tape will be made until "VOICE" is found.
4 1f UVL has not been defined, error will be flagged out as

“size” error.

October 30, 1985

$-22 Write UVL

- {This writes the UVL into the CMT).

Entry address: 009Ch
Registers:
in out

[A] 22h error#
<O - error
{BCl - .
[DEl - ”
[HL] - '

1 <C>=1 indicates error has been detected.
_Further infor mation will be provided by [A].

2 Error® [A]
[xxxxxIxx] xx3xxx3=00h Normal end
non-0# MSX-BASIC Error

3 The file name of the data being written is atways assumed to
be "VOICE" :

4 Prior to issuing the call, the UVL must have been defined.
Omission of the UVL could cause the system to crash.

Qcataher 20, 198RS

§-23 Read EVB

{This reads in the EVB [rom the CMT).

Entry address: 009Ch

Registers:
in out
[A] 23h Error®
<« - errof
{BCl - :
[DE] - *
[HL] - :

1 <C-=1 indicates error has been detected.
Further information will be provided by [AL

2 Error®* [A]
' [xxxxrxx1] xxYXxXX¥-00h Normal end
non-0# MSX-BASIC Error

3 Prior to this call, a file name must be placed at M.FEVB of MIDB.
The searching of the filename on the tape will be continuously
carried out until the file name is found.

4 If the EVB has not been defined prior to this call, the error will be
flagged out via size error.

$-24 Write EVB

October 30, 1985

(This writes the EVB into the CMT}.

Entry address: 009Ch
Registers:
in out

[A] 24h Error#
<O = error
[BCl - *
[DE] - *
[HL] - X

1 <=1 indicates error has been detected.
Further information will be provided by [AL

2 Error® [A]
- |xxxxxxIx]

¥xx¥¥YYI=00h
non-0#

Normal end
MSX-BASIC Error

Prior to this call, a file name must be placed at MFEVB of MIDB.

The searching of the filename on the tape will be continuousty
carried out until the file name is found.

flagged out via size error.

If the EVB has not been defined prior to this call, the error will be

Octaber 30, 198RS

. 5-28 CSM Voicing

(This will call the CSM vocal synthesis driver).

Entry address: 009Ch
Registers:
in out
(Al 28h Error®
S - error
[BCl - x
[DE] CSM buffer address 2
{HL] - ¥

1 <=1 indicates error has been detected.
Further information will be provided by [A]

2 Error® [A]
[zxxzXXXX] XXXXXX1X=00h Normal end
01h run-time error

3 Prior to calling this command, assign all the channels to the
IDB*CSM, with voice®#46 linked up to it. .

4 In IRQ processing, the control to UISV (user interrupt service vector)
will not be granted at all during the CSM processing.

4-6 M - call

December 3, 1985

M Receive MIDI

(1z operating mode 1.0/1.1, this scans the input poct of the MIDI
interface, and returns the data if there is a data).
(In operating mode 2.0, data is retrieved from FIFO/Re buffer)

Entry address: 00ASh
Registers:
in out
[A] - =
(0 - 1 3
{BC] - o
IDE] - data/staus
[HL] - o
1 Status [E] .
[oozyoox0l x RxRDY
y Overrunerror (op 1.0/1.1)
FIFO/Re overflow (op 2.0)
z Framing error

4-7 F-Call

December 3, 1985

F-00 Clear FIFO/Re

(This clears FIFO/Re buffer and resets error flag)

Entry address: 00B1h

Registers:
' in out
(Al 00h x
O N .
[BC] - ®
(DE] - .
[HL} - ¥

1 Ecror flag is reset.

December 3, 1985

F-01 Clear FIFO/Tr

(This clears FIFO/Tr buffer}

Entry address: | 00B1h

Registers:

in out

1A} 0lh *
© . x
IBC} = *
IDE} - .
[HL] - *

1

Ecror flag is reset.

F-02 Reset Error Flag

December 3, 1985

(This resets error [lag of MIDI inlerface register)

Enf.ry address:

00B1h
' Registers:
in out
[A] 0Zh -
© _ :
IBC) - »
(DB] - *

[HL]

December 3, 1985

F-03 Send a byte of MIDI data
(This sends a byte of MIDI data 1o FIFO/Tr}

Entry address: 00B1h
Registers:
in out
(Al 03h 3
O - x
[BCl -/data .
|DE] = *
[HL] & *

1 This is equivalent to R-21, but is faster.

2 Normallv this is used to send MIDI real time data between F8h
FFh.

3 The same care must be iaken if a data between 00h and F7h is to be
trasmitted.

4 If FIFO/Tr is full, it waits until FIFO/Tr becomes available to send.
If no FIFO is defined, it sends a data directly to MIDI port.

Octaber 20, 1985

BDOS-call (Disk access routines)

(Disk access routine)

Entry address: 00B4h
Registers
in out
[4) see BASIC status
O <0> normal <I> illegal call

[BC} see BASIC see BASIC/substatus
IDE] see BASIC see BASIC
[HL] see BASIC see BASIC

In operating mode 1.1, interrupt should be disabled before and after
BDCS-call.

In operating mode 2.0, interrupt can be enabled before the call. If it
was called with El, call is returned with interrupt being enabled.

MBIOS disables IRQ state in [h.kei] routine.
1llegal call conditions

-MBIOS is already perfor ming BDOS-call.
-Disk does not exist.
-MBIOS is already performing SV-call or UISV.

Status
-FEh; disk error (with sub status)
-other ; see BDOS status manual

Substatus

01h wrile protected
<02/03h> drive not readv (R/W)
<04/05h> CRC error (R/W)
<«06/07h> seek error (R/W)
<08/0%h> record not found (R/W)

BDOS-call can not be issued in UISV or AST.

October 30, 1985

© 4-9 AST (Asynchronous System Trap)
AST - 01 MK trigger

(This is an AST caused by the trigger from the MK {Note-on, Note-off))

MIDB vector: offset 3Ch (m.trmk)
Registecs .
out

[A] Olh

<« -

iBCl -

[DE] Event

[HL] .

1 Event [DE] contains the same event daia used in Queue.

2 Toreceive this AST control, MK scan (K-01) should be issued
elsewhere in the program.
This AST is invoked during the execution of K-01 routine (, if the
vector is defined in the MIDB). .
Users however don't have 1o worry about the synchronicity of
both (K-01 call and AST-01 handler) routines.

Qctober 30, 1985

AST - 02 Error

(This is an AST caused by the error generated by MBIOS).

MIDB vector: offset m.trer (3Eh)
Registers:
out
[A] 02h
Cr -
[BC] -
[DE] error®/-
[HL] -
1 Error [D]
{00010x32] QU* has overflowed.
Ixx=0 -7 ,QU»
100100000} EVB is full (end of recording,
All-Note-0Off issued)
100100001] EVB end is encountered (end of
; playback)
1001 1xxxx] MIDI time-out error

xxxx= 0 - Fh ;MIDI channel#*

2 When playback/recording is stopped by usual SV-call, ‘AST
(20h and 21h) will not occur.

October 30, 1985

4-10 UISV trap
(This is an interrupt trap caused by user defined UISV vector)
MIDB vectors: offset 30h (m.i38h)
~ offset 32h (m.icka)

offset 34h (m.ickb)
offset 36h (m.iund)
aoffset 3Ah {m.irmd)

Registers:
[A] stacking count
< =
[BC] *
IDE] *
[HL] *
[1X/1Y] *

1 Inoperating mode 2.0, when called via UISV, [A] contains stacking
count of IRQ's. '
For <m.trmd> call, however, stacking count is not maintained.
2 {ﬁ so‘?erating mode 1.0/1.1, JMP is used to reach user’s routine via
In operating mode 1.071.1, IRQ should not be enabled until RET.

3 Inopearting mode 2.0, CALL is used to reach user’s routine via UISV.
In operating mode 2.0, IRQ should be left enabled.

Apoangix SFG-35:

M2I0S supplementary reference

data: Oct, 26,1985
Dec,05,1985

compatioility leaena:

012 Used in ooerating mode 1.0/1.1/2.0
01 Used in ovarating moge 1.0/1.1
12 Used in on2rating mode 1.1/72.0
2 Used in oberating mode 2.9
(0e) If used in SF3-01, M3IJS may crash.
(22) If used in operating mode 2.0, MBIDS may
crash,
* Commanag re2xains same. However some

defference in usage and meaning exist,

C1]. List of important memory addrass

1g areal
008Jdh "HCHF MO (A32II 5 chr.)
0084k ==== ==== RIM id*
0087h mmm- = Hardwarz typew# -
0033h ==== e-=- Softwars version®
SFG=01: 003Ch "MCAFMO"
00%5h camssnana
; . 0037h «a$G0h>..
00%38h e s €0Xh>. .
SFG=05: 0GRIh "MCmFMAn"

0085h cemsssnmn
N0837h «+<30n>..
N0Jd%3h « e €1%h>. .

sntry address:

000Ch ROSLT 12
0014h WRSLT 12
001Ch CALSLT 12
0024h ENASLT 12
0025h CALLF 12(0e)
003Ah RDPP.O 12¢02)
0030h SYCNVD 12(0e)
00COh EVCNV1 12(0e)
0090h I-calt (1.0) 012
00Ash I=call (1.1) 12(Ne)
004sh I-call (2.0} 12(02)
0U37h END=call 12¢(0&)
00a2h M-Monitor 1.0 012
004:h M=-Monitor 2.0 12(0e)
0084h 3pCs=call 12(0e)
0093n Recall 012
00950 K-call 012
0099h P=call 012
009Ch S-call 012
D0Aa3h Mezsll 012
0031h F-call 2(0e)
009Fh IRQC 01 (2e)
Cudash R=call 12(0e)

0010k S-call 12(0e)

£2). List of SV-calls

I-call:

R=900 Damp 012
R~-01 ALL Note Off (by Quaue) 012
R=02 Set event into Jdueu2 012
R=33 (reserved)

R-04 Set event into Chori=K3 012
R=-05 Set Chord# into Chord=%3 012
R-06 -

R=-07 -

R=0s Start Recording 012
R=0v Set Recoraing Clock 012
2=-9A. Stag Recording 12
R=03 Start Playback 012
R=-0C Set Playhack Clock 012
R=00 Stop Playoack n12
R-0z (reserved)

R=)F -

R=-10 Start Autoc Rhythm 012
R=11 Set Auto Rhythm Clock 012
R=-12 Stop Auto Rmnythm 012
R=13 Select Auto Rhythm Jueue 012
R=14 Select RHB 012
R=15 -

R-16 -

R-17 -

R=10 Load iF0 012
R=-19 Load KC 012
R=1A (reserved)

R-15 (reserved)

R=1C -

R=-1D (ressrved)

R=12 -

R=1F -

R-20 Sena "MIDI message" 12
R=-21 Send "MIDI real time message"” 012

{=call:

K=00 Init MX 012
K=-01 Scan MX 012

$=20 Define ID3 012

$=-01 =

§=92 Define EVB 012

5=93 Define UVL 012

S=-04 Initialize EV3) 012

5=03 Define FIFD 12

S=0s -

5=-07 =

S=03 (reserved)

S5=03% Assign Channel 012
' S=-0A Assign Queue ang MIDT chaannel 012

S=023 ALL MNote Off (by I73) 012

$=0C Initialize MIOI 012

S=95 Znaslefdisasle OPH-ITG 12

5-0z Salect UISY priority mode 2

S=0F -

5=-10 Set 8rilliance 012

S=11 Set Pitchoend 012

5=12 Define Play mode 012

5-13 Set Valume 012

S=14 Load Yoice 012

S=135 Get Voice 012

S=16 Put Voice 012

$=-17 Set stereo L/R 12

§=13 Set AMSZ, PM3 12

5-19 Get & Load Voice 12

S=1a -

S=12 .

S=1C -

S-14 -

§=1c -

S=-1F =

S=22 Tila driver 12

$-21 Read UVL 012

§=22 Write UVL 012

5=-23 Read cVa 012

5=24 Write SVR c12

S=23 -

S=26 -

5=27 -

§=23 C3M Voicing 012

F=0Q Clear FIT0/Re 2(0e)

F=01 Clear FIS0/Tr 2(Ne)

F=02 Regat arror flag 2(%e)

F=03 Send "real time messaze" : 2(Ne)

£3]1, MIDS comoatibility

m.sram 23h[LR3I s/ram size 12

m.f3 2AhIW] thru (timer =--=-> F3h) 2
L0000 90-=3 <1> timer/a ===> M[DI(out)
L0000 0C*=1 <1> timer/s ===> MIDI(out)}

m.i58h FIJIhLW] [k}
m.icka 32h({W] 012
m,ickb 3&4hiW] c12
m.iund 33h(W] 012
m.trmd 2ARIW] datas exists in TIF2/Re 2
m.trmk 3IChIWl A3T#? 012
A3TR3 012
m.trer 3Zh{Wl A35T32 012
m.tnru LWl MIDI/thru table 2
£3h CO030 DJ0=Y <1> enable F3h tarug

EFh CODOO0 DO0=) <1> enable FFh thru

£4). memory, slot map

sperating mode 1.0:
Memory map: 000uh = IFSFh SF5=03 rom
\ e 4Q00h = 7F=%h user's are3
(pottam)= Z3FFh intarface area
(ID3, JVL, stack, ...)
ECO0h = F37Fh MID3 & bios' work
F380h = 974N basic worx area
F375h = F354h bios work area

; F9F3h = SAS4h user's arza
CAFSh = FF=7F hasi¢c work area
sperating mode 1.1/2.90:
Memary map: N00Dh = 3FF? SFG~05 rom

h
h user's arza
m) dintarface area
(MIdR, ID3, UVL, stack, ...)

(cottam)=-{hinz

(himem)= F374h basic work area
F$75h = £3%4h bios work area
F9F5h = FAF&4h user's area
FAFSh = FF¥<h basic work arz23

€31. <Zalling Segquences (outside of m-aios repartoire)

rdsit: sa2e basic
drslt: see basic
calslze: s2e basic
snaslt: see basic
callf: see basic
rdop.0: get slot? of related addiress
<sequence> di
call ngnah

(IR3/cisapled wnen returned)

<interface> <in> <raturn>
Cal - slot#
<c> - *
Coel - *
Cdel - x
Chil target address *
Eixliy] = *
evenvQs: conyert event{opm) =--=> event(MIDI)
<sequence> call 0032h
<intarface> <in> <return>
Cal - *
<g> - 0
Cocl =/MIDI=-ch# =/1st=byte(9Xh)
Cdel event(kc¥/val) 2nd=-/3rd-oyte
Chll - *
Cix1l - o
Ciyl - 0
2venvl: convert eventi(¥i2I) ===> gvant(apa)
<seguence> call 0Q0C3h
<interface> <in> <return>
fal - *
<c> - <0> valid <1> invalid messaage
Cocl =/1st=byte =/MIPI ch#
Cael 2nd=/3rg=oyte evant(kc®*/messayge)
Chtl - *
Cix] -)
Ciyl - o

« 1st byte of valid message is 3Xn or-9Xh.

C6l. Zalling sequences

I-call: initiali

e -

<segquence>

<interfaca>
' Cal
<c>

Cocl
L !
Chll
Cixfiyl

<1122 azdress>

(m=bios repertaire)

ze m-bios

di

eall N033h (oios 1.0}
9023h (1.1)
B0A3hH L4 2.0)

(IR%/disapbled wnhnen returned)

<in> <return>

- *

- i

- *

MID2 address *

- £ 3

- |]

usa3 ia operating mode 1.1/2.2

This routine oerfoarns the folldwings.

. Defines MID3(72%J3k bytz2s) ana initializes it.
. Protects pasic's PLAY and initializes queue

ouffer.

« Laads A8k dnpt; MUSTCELL3TEY),

. reolaces A.PLAY(ffc5h) with...

poo hl
rgt
IiD-calt: escapa from m=hijos
<hios 1.1/2.0> di
call 0387h
(IR) gaisaolad % im1 when returned)
<interface> <in> <return>
Lal - =
<> - *
Cocl - *
Cdel = s
Cnll - =
Cix/iy - *

. Do not issue END=-call aftzr £ND-call.

M-monitor: call Music Monitor

0
0 can

<sequence for M=mgonitor 1,93

DISK functian
DISK function

is not availaole
is availaole

(1.9
(define EVv8)
(gefine UVL)

(1.1/72.0
(define EV3)
(cdafine UVL)

execute JI-call
exacute S$=)2
execute 3$5-33
di
call 0042h
(I3 disaolad/fial)
execute I=zall
<segquence for M=maonitor 2.0>
execute I-call
execute S$=32
ex=2cute 5-33
di
call 00&zh

(IR] disapled/inl)

execute J=-czall
<interface> <in>
Lal -
<> -
Cbel -
Ldel -
C'hil:d -
Cix/iyl =
Calt.rR]1 -
<memory map> 0000k -~ 3IFTFhH
4000h = 7FFFh

(bottom)=(himam)
(himam)= FF=Th
73Gha)..

saal

-.«C C20hB)..

<return>
*

* *r x % x w

SFG-05
user's area
eea MSI03 maps
program
interface area
basic's area

M=monitor
here

MID3
ena Fined address (S202he)
in M=monitor 1.0
uve
evl «ae more than 2000h3
stack «as mare than 200h8

300S=call: execute 3DNC-call (for disk access)

.---__--_-_--_--__--__------_-_-—-n-----nu-_----—-p-—-__--_-——-------

. .€oios 1.1> di e = T . =
call 00824h
(I3 aisaolad Wwnen return24d)
<pios 2.90> ei
call 0902%h -
(I2Q enabled when raturnea)
<interface> <in> <return>
Lal to sasic status
<¢> - <3> naormal <1> invalid
L Czcl to sasic ¢ram basic / sus status
Cdel to oasic from basic
£ *3 sasic 4rsam zasic

. MaIus uses C[H.HEYIZ, and restores it after gozration.

<jnvalig condition>
. when m=ziss is alresdy perforzing 3373-call
. disk does not exist.
. when m-pios is perforaing SV-call or uisv,

<status>

<fen> disk physical error (sez suo=status)
<a%ner> baooss's stztus

<sup=status>
<)1h> write praota2cted

<02/03h> drive not ready (R/W)
<04/95h> CRC error (R/W)
<04/07h> saek error (R/A)
<08/06h> record not found (/W)
<0a/Noh> write fault (2/W)
<0c¢/0dh> other errar (R/W)

--—---——--‘.----——------——--——_n—-—---——--‘-—-----—---.n--——n_----——-

<oios 1.0/1.1>

<oios 2.9>

<interface>
Cal
<c>
Cocl
Cde]
Chall]
Cix/iyl

<oios 1.2/1.1>

<oios 2,0>

<interface>
Cal
<c>
Chel
Cael
Chtl
Cix/iy]

<sias 2.9>

<interfaca>
Lal
<c>
Cocl
Cdel
Chll
Cix/iyl

call 037%3h
(IR2 disaoled wnen returned)

X
call 0073k
(I3Q enabled whan raturned)

<in> <return>
op=codes Status¥

- <0> normal <13 errar
Darametar *

Darameter *

- *

- o

di/ei

call 0095h

(I3 disabled/enabled when returned)
ej

call N09s5h

(IRQ enabled whan returneag)

<in> <return>
op=code# COh

- <0> normal <1> busy

Carameter
Darameter

LSl

call 0099h
(IR aisaoled/2napled when returned)

ei

call 0093h

(IRQ enablea whan raturned)
<in> <return>
00h 0dh

- <3> noraal <1> Susy

queue maD

Q % x »

S«call:

<pias 1.0/1.1>

<gios 2.0>

<interfaca>
Cal
<c>
Cocl
fdel
Cnhtl

Cix/iyl

call Du?3h
(124 disaplzd wnen returned)

ei
call naoch
(I?Q enabled whan returned)

<in> <return>

op=code#d status®

= <0> normal <1 error
parameter *
sarametar *

- L]

- o

. Contents of alternative resgisters are destroyed
in $-20,5-21,5-22,3-23,5-2% calls,

<pios 1.0/1.1>

<pios 2.0>

<interface>
Cal
Lc>
Casel
Cael
Chtl
Cix/iyl

<status>

di

call 00A5h

(I2) disapled when returned)
ei

call 00as5h

(I3 enabliea whzn returned)
<in> <return>

- L4

- *

- *x

- data/status
- *

- [
m—rw we—— <1> fraaing errar
mwek meooa <1> owverrun,

FISJd/r= is overflow
data exist

wmma mak=

<1>

<gios 2.0>

<interface>
Cal
<c>
focl
[del]
Chll
Cix/iyl

<oios 1.0/1.1>

<interfaca>
Cal
<c>
Cocl
Cdel
Chil
Tix/iyl

call 2021h
(I34 enabled 4hz2n raturaned)

<in> <return>
op=coded *

- £]
varameter *
parameter *

- i

- -}

di
jpfcall 039Fh
<in>

[7]. several Sv=calls

=20 ecall:

=21 e¢atl:

5=-05 call:

- -

5=00 call:

send MIDI message

<in> L{return>
L 2] 20h Noh
< ¢c> - <>
Cocl buffer size *
Cael buffer addrzss *
Cnl1] - *

You must send one MIDI messagz by one R[-20 call.
It FIFD/Tr is #full, it wai*s.

sena MIDT real time mzszage

<in> <return>
[al 20h 03k
< e> - <35>
Locl =/data *
[del - *
Cnll - -
<data> 1111 1=-= €3h - Frh

If FIFO/re full, it waits.

define FIFQ/re, FIT)/tr

<in> <return>
Cal 05h 20h
<c> - busy
Lbel FIFJQ/Tr address *
Cael FIFO/Re address *
Call - *

Tnis 5V-call includes tne function of $-0C call, ana in
operating moge 1.7 this 3V=call is same as S=-0c¢ call.

The size of FIFO/Re or FIZO/Tr is 100h bytes.

FIFO/Re or FIFO/Tr is canceied when address value is 0000h.
dnen FIFO/Re is defined, IxA2Y IRA is enaoled.

When FIFZ/3e is not definad, Ix3DY IPJ s ddssntled.

When FIFO/Tr is not defined, TxRDY IRQ is disabled.

eanasle/aisacle opm I°BQ

<in> <return>
Cal 0Dh 0dh
<ed> - busy
Cocl -/mode *
Cael - *
Cnl3 - *
<moge> 0900 {J0-= <1> epasle clock=A

0000 §0=- <1> enaale clock=-3

select IRQ/priority

<in>
Cal DcEh
<c> -
Coel -/mode
Cgel -
CnlL3J -

<moae> N000 020*

<raturn>
00h
busy
x*

*
*

<0> [MIDJI] ===> [al ===> [b] ===> Cvdg]l

<1> [AIJI] ===> [p] ===> [al ===> Cvdp]

§-17 ca2ll: set steres LU/r
€in>
Cal 17k
<g> -
Cocl T03#/data
[dal - *
Cnll - *
<data> *=00 0000 <1> enasle /1L
-=30 GOul <1> /r
$5=13 cail: set PMS, AM3
<in> <rezurn>
Cal 13h N0h
<c> - busy
Coel ID3#/data «
Cde] - *
Chtll - *
<datar Qx*x (0-- PMS
Qu== QN==* Aus
“3=19 call: get % loag voice (performs 5=14 aftar $5-13)
<in> <return>
Lad “3h tah
<e> - busy °
Cocl 108#/voice® *
Cdel - *
Cnl1] - *

5=20 call: file driver (basic's format id#=feh)

B L LT T L L L L T T L L T T ———

<in> <return>
Cal 20h error position
<e> - error
Cocl - -/error status
Cael buffer addarass *
Chtll - *

« Contents of alternats registers are destroved.

<error logation>
’ <J1> pre=-procedure
<J92> pge~ fila
<03> read basic's heager file
<2L> preoad fila zody
<35> close file
<{4> craare file
<07> write oasic neader
<J%> write fite hody

<agrror status>
<01> disk /o error (write protected)
<J2>» aisk i/o error {(drive not ready)
<0X> gisk i/fo error (crc error)
<04> disk il/o error (se2k error)
€05> disk §/c arrzr (r2zord not fouad)
<06> disk i/o error (write fault)
<37> ilo error
(undz®inad dis« error)
(¢at i/o error)
C s/ram if2 errar)
<08%8> pdos error
<09> dinvalid parameter 2arror
(invalid 2cgcaes cade2)
(invalid devica®)
<0a> invaliag file type error
(invalid bssic's id2)
(invalid yamaha's id)
<yb> fiie body, sizs is Larger tnan suffer
<0c> busy, invalid condition

<puffer / 17 oytes>

£ad access coa2~
€271> r2agd file
<01h> write file
<G2h> ra2ad UVL
<0%h> write UVL

£11 device®* <J2h> cat
<12q> s/ram
<Z2n> dafault drive

<21n> a:
<22h> h:
C£23 buffer addarzss (for acces3~-code#=0)
C4] buffer size (for accesS=coda¥z2)
£51 fila name
cme e 4 chr, (for acces3=codes=0)

"YAICE " (fixed foar UVL)
' s/ram: not usai .
disk: 8 chr.

rfarn -l mmed AA A s A

cmt s not usesj
‘s/ram: not used
disk: 3 car.
"yn3" (default<dOn> for UVL)

=00 call: clear FIS0/re

<in> <return>
Cal - 00h *
<c> - *
" Cocl - *
Cael - *
Chil - *

. Clear FIFQ/Re, and reset arror flag

==01 call: clear FIFD/tr
<in> <return>
rfal Mk x
<c> - *
Coci - *
Cdel - *
Chll - *
==02 call: reset error flay
<in> <return>
Cal 02h *
<:> - *
Coel - *
Cdel - «
Calld = *
F=03 call: sand MIDT real time message
<in> <raturn>
Cal 03h *
<c> - *
Locl -/data *
Cael - *
Cal] = *
Cix/iyl - *
<gata> 1111 1--- Fah = F7h

£al. 31fference petween SFG=01 and t‘F\,-l.'JS 1Y npgela rhizgs G0-%

The following aifferences are the resuit of "bug-fix-d“ maae on
the MgIOS of 375=05. G - ey

lLoag Voice: Cleare relatad I2%'s wvoice ar=3 (&% oytes)
at Loading time of SVL's voice, autamatically.

SVL data: Resets "Load enaple oit" if ..
(PUS*PMD) + (AMS«aMD) =]

3 ats BMS §F PMIEO, - oo

ets 0 ints A“3 if PMD=O.

Partanenta: Znahles "*r+'~=1t: ayan if I222 is5 not
same as this IN3's channel”.

Assign Channei: Loads voice into IDERCSM at tha assigning
ot channels.

Noise: Bug=fix for noise function.
LFD sync: Bug=fix for L] sync function.
MiZi(out): Enacies MIJI(out) for tne ID5 whicn has

no OPM channels.

Recoraing: Enable recaraiag start even if MS3 of
racording gdeus# pyte (in R=-03) is reset.

Recarding: Missing of Last event of racorded data
is nou fixed.

<K=30> call: Disables I3Q ia <X-00> call.

MK scan: Disapoles TR wnile scanning MK.
BASIC"s HONK: Restores HJOK (H.XZYI, H.ERRQ) after

Loading or saviag into CMT.

-

-call: Sats 08 au%taut laval into =85.254b.

b
[T
=1
"

{caution) You nust not issue aay SV=call
(except for F-call) in AST.

When queue has overflowed by 3I03's “seat
event (R=02)", 2ios issues "all note off
(R=D1)" for razlat:d suege automatically.

The following acifferences are the result of "refine of M3I3S
specification’” of S7FG=05,

slot:

MiDI(out):

all _note_off

Znables th=
is expanded.

8135 function,

even

if slot®0

All=lote=2ff m2ssaze is now changed

to «ork better

EDsasay
V3T aTe s

with DX series.

AN/ SN
8Xh/TFh/00N

OXh/ L3R/ 20%
3Xh/7Bh/00N

damp
damp
damp

damp
release (normal
ralaase (normal

{mcno/onl
(polv/on)

(sus*aialfof?)

(all note/foff)

key/off)
keyfoff)

